Zurück
Semester | Frühjahrsemester 2020 |
Angebotsmuster | unregelmässig |
Dozierende | David Belius (david.belius@unibas.ch, BeurteilerIn) |
Inhalt | This course will introduce Lie groups, Lie algebras and their representions. Lie groups play an important role in physics, and in many areas of mathematics, such as random matrix theory. As opposed to standard treatments this course will not presuppose any knowledge of differential geometry. Rather, it will develop the theory directly for Matrix Lie Groups, which are in any case some of the most important examples of Lie groups, and for whose treatment differentiable geometry is not necessary. These groups are closed subgroups of the generalized linear group GL(N) of NxN matrices, e.g. the special linear group SL(N) or the orthogonal group O(N). These groups are also some of the most important examples of differentiable manifolds, and as such this course is a good preparation for a later study of the general theory of differential geometry. The course will follow the book by Brian Hall closely. |
Literatur | Brian Hall - Lie Groups, Lie Algebras and Representations, an elementary introduction (Springer) [It will be announced later if the 1st or 2nd edition will be used] |
Teilnahmebedingungen | Prerequistes: Analysis I+II, Lineare Algebra I+II |
Unterrichtssprache | Englisch |
Einsatz digitaler Medien | kein spezifischer Einsatz |
HörerInnen willkommen |
Intervall | Wochentag | Zeit | Raum |
---|
Keine Einzeltermine verfügbar, bitte informieren Sie sich direkt bei den Dozierenden.
Module |
Modul: Angewandte Mathematik (Bachelorstudium: Mathematik) |
Leistungsüberprüfung | Lehrveranst.-begleitend |
An-/Abmeldung zur Leistungsüberprüfung | Anm.: Belegen Lehrveranstaltung; Abm.: stornieren |
Wiederholungsprüfung | keine Wiederholungsprüfung |
Skala | 1-6 0,5 |
Wiederholtes Belegen | beliebig wiederholbar |
Zuständige Fakultät | Philosophisch-Naturwissenschaftliche Fakultät, studiendekanat-philnat@unibas.ch |
Anbietende Organisationseinheit | Fachbereich Mathematik |