Zurück zur Auswahl
Semester | Herbstsemester 2019 |
Weitere Semesterveranstaltungen zu diesen KP |
10907-01 (Vorlesung) 10907-02 (Übung) 10907-03 (Übung) |
Angebotsmuster | Jedes Herbstsemester |
Dozierende | Thomas Vetter (thomas.vetter@unibas.ch, BeurteilerIn) |
Inhalt | Die Vorlesung führt ein in das Design von Mustererkennungssystemen. Präsentiert werden Klassifizierungsmerkmale sowie Klassifizierungsverfahren (z.B. Bayes Classification, Neural Network, Support Vector Machine oder AdaBoost) und deren Funktionsweise sowie der Einsatz und die Evaluation dieser Verfahren. Während der Übungen lernen Sie, praxisnahe Klassifizierungsprobleme zu lösen. |
Lernziele | - Bei der Datenerfassung geeignete Klassifizierungsmerkmale auswählen und nutzen, - Klassifizierer beschreiben, einsetzen, trainieren und evaluieren, - eigene kleine Erkennungssysteme implementieren, die geschriebene Zahlen erkennen oder Gesichter unterscheiden können; |
Literatur | S. Theodoridis, K. Koutroumbas, Pattern Recognition, 2nd (3rd, 4th) ed., Academic Press, 2003, ISBN: 0126858756. (2006, ISBN: 0123695317; 2008, ISBN: 1597492728) C. Bishop, Pattern Recognition and Machine Learning, 2006, Springer Verlag, ISBN: 0387310738 Ergänzend: R. Duda, P. Hart, D. Stork, Pattern Classification, 2nd ed., Wiley-Interscience, 2000, ISBN: 0471056693. Leihexemplare sind in der Uni Bibliothek in begrenzter Zahl vorhanden |
Bemerkungen | Zielpublikum: Studierende aller Fachrichtungen, insbesondere der Naturwissenschaften. Pflichtveranstaltung im Hauptfach Computer Science. |
Weblink | Link zur Kurswebseite |
Teilnahmevoraussetzungen | Grundlagen in Mathematik und Statistik. Basiskenntnisse der Programmierung. Kenntnisse in Python sind wünschenswert. |
Unterrichtssprache | Englisch |
Einsatz digitaler Medien | Online-Angebot obligatorisch |
HörerInnen willkommen |
Intervall | Wochentag | Zeit | Raum |
---|
Keine Einzeltermine verfügbar, bitte informieren Sie sich direkt bei den Dozierenden.
Module |
Modul: Applications and Related Topics (Bachelor Studienfach: Computer Science) Modul: Computational Sciences II (Bachelorstudium: Computational Sciences) Modul: Informatik II (Bachelorstudium: Informatik (Studienbeginn vor 01.08.2010)) (Pflicht) Modul: Informatik-Kern (Bachelorstudium: Informatik (Studienbeginn vor 01.08.2016)) Modul: Interdisziplinäres und Wissenstransfer (Masterstudium: Actuarial Science) Modul: Machine Intelligence (Bachelorstudium: Computer Science) Modul: Methoden für Computational Biology (Bachelorstudium: Computational Sciences (Studienbeginn vor 01.08.2018)) Modul: Methoden für Computational Chemistry (Bachelorstudium: Computational Sciences (Studienbeginn vor 01.08.2018)) Modul: Methoden für Computational Mathematics (Bachelorstudium: Computational Sciences (Studienbeginn vor 01.08.2018)) Modul: Methoden für Computational Physics (Bachelorstudium: Computational Sciences (Studienbeginn vor 01.08.2018)) Modul: Wahlbereich Informatik (Bachelor Studienfach: Informatik (Studienbeginn vor 01.08.2016)) |
Prüfung | Lehrveranst.-begleitend |
Hinweise zur Prüfung | Die erfolgreiche Teilnahme an den Übungen ist Voraussetzung, um zur schriftlichen Prüfung zugelassen zu werden. Details zu den Übungen und zur schriftlichen Prüfung werden in der Vorlesung bekannt gegeben. schriftliche Prüfung voraussichtlich Freitag, 24. Januar 2020, 10:15 - 12:00 Uhr im Hörsaal 001, Kollegienhaus |
An-/Abmeldung zur Prüfung | Anm.: Belegen Lehrveranstaltung; Abm.: stornieren |
Wiederholungsprüfung | keine Wiederholungsprüfung |
Skala | 1-6 0,5 |
Belegen bei Nichtbestehen | beliebig wiederholbar |
Zuständige Fakultät | Philosophisch-Naturwissenschaftliche Fakultät, studiendekanat-philnat@unibas.ch |
Anbietende Organisationseinheit | Fachbereich Informatik |