Semester | Herbstsemester 2019 |
Angebotsmuster | unregelmässig |
Dozierende | Roman Schmied (roman.schmied@unibas.ch, BeurteilerIn) |
Inhalt | - introduction to Mathematica, operator algebra and non-commutative multiplication - one-dimensional time-independent Schrödinger equation, interacting particles in one dimension, time-dependent Schrödinger equation - finite Hilbert spaces, spin-1/2 qubits, spin-j systems, Clebsch-Gordan algebra - tensor-product formalism for combining different degrees of freedom - lattice spin problems - spin-statistics theorem, bosons, fermions - atomic structure: He, H2+, spatial basis sets, hyperfine dynamics |
Lernziele | Quantum mechanics is too complicated to be done by hand. Even relatively simple problems, such as two interacting particles in a one-dimensional trap, do not have analytic solutions and require the use of computers for their solution and visualization. More complex problems scale exponentially with the number of degrees of freedom, and make the use of large computer simulations unavoidable. This course will revisit most of the problems encountered in introductory quantum mechanics, focusing on computer implementations for finding analytical as well as numerical solutions and their visualization. We will use these implementations as building blocks for solving more complex problems such as the coherent laser-driven dynamics in the Rubidium hyperfine structure. The course will be taught in the Mathematica programming language. No prior knowledge of Mathematica is necessary, and Mathematica licenses will be provided. Alternatives to Mathematica, such as Matlab or Maple, may be used by the students, but only limited help will be available from the instructor. |
Bemerkungen | The lecture can be given either in English or in German. |
Weblink | lecture script |
Teilnahmevoraussetzungen | - quantum mechanics - basic knowledge of computer programming |
Unterrichtssprache | Englisch |
Einsatz digitaler Medien | kein spezifischer Einsatz |
HörerInnen willkommen |
Intervall | Wochentag | Zeit | Raum |
---|
Keine Einzeltermine verfügbar, bitte informieren Sie sich direkt bei den Dozierenden.
Module |
Modul: Computational Sciences II (Bachelorstudium: Computational Sciences (Studienbeginn vor 01.08.2018)) Modul: Methoden für Computational Chemistry (Bachelorstudium: Computational Sciences (Studienbeginn vor 01.08.2018)) Modul: Methoden für Computational Physics (Bachelorstudium: Computational Sciences (Studienbeginn vor 01.08.2018)) Modul: Vertiefungsfach Physik (Masterstudium: Nanowissenschaften) Modul: Vertiefungsfach Physik (Masterstudium: Physik) |
Prüfung | Lehrveranst.-begleitend |
Hinweise zur Prüfung | Semester project |
An-/Abmeldung zur Prüfung | Anm.: Belegen Lehrveranstaltung; Abm.: stornieren |
Wiederholungsprüfung | keine Wiederholungsprüfung |
Skala | 1-6 0,5 |
Belegen bei Nichtbestehen | beliebig wiederholbar |
Zuständige Fakultät | Philosophisch-Naturwissenschaftliche Fakultät, studiendekanat-philnat@unibas.ch |
Anbietende Organisationseinheit | Departement Physik |