Zurück
Semester | Herbstsemester 2021 |
Angebotsmuster | Jedes Herbstsemester |
Dozierende | Jitao David Zhang (jitao-david.zhang@unibas.ch, BeurteilerIn) |
Inhalt | Applied mathematics and computer science are indispensable in modern drug discovery to enable decisions that have direct impacts on lives. This introductory course will offer a practitioner’s review of mathematical concepts, informatics tools, and industrial approaches in relevant fields, especially bioinformatics, molecular modelling, cheminformatics, mathematical modelling, experiment design and statistical inference, and machine learning. It is hoped that the students are exposed to the interdisciplinary and multiscale modelling nature of drug discovery, and are motivated to deepen their knowledge in relevant fields in future study and practice, to be able to solve open challenges in drug discovery. |
Lernziele | We explore the drug-discovery process and study applications of mathematics and informatics with case studies. We examine how mathematics concepts and informatics tools are used to model complex systems at multiple levels - molecular level, cellular and omics level, organ- and system-level, and population level - and how the multiscale modelling approach contributes to drug discovery. |
Literatur | Lecture notes and slides. Recommend reading (papers, book chapters, etc.) and media (e.g. YouTube videos) will be distributed. |
Weblink | www.amidd.ch |
Teilnahmebedingungen | Students of natrual sciences, including biology, physics, chemistry, pharmacy, and medical students are as much welcome as students of mathematics and computer sciences. Though no prerequisite courses are obligatory, elementary understanding of statistics, probability, calculus, and ordinary differential equations are helpful. High-school knowledge in physics, chemistry, and biology are required. Knowledge and proficiency in at least one programming language (preferably C/C++, Java, R, Python, or Julia) is very helpful to try real-world problems. |
Anmeldung zur Lehrveranstaltung | Due to the coronavirus pandemic, the course in fall semester 2021 will take place online by Zoom. To attend, join the meeting with this link: https://unibas.zoom.us/j/68803401669. The passcode required to join the meeting is shared among registered students with emails. |
Unterrichtssprache | Englisch |
Einsatz digitaler Medien | kein spezifischer Einsatz |
HörerInnen willkommen |
Intervall | Wochentag | Zeit | Raum |
---|---|---|---|
wöchentlich | Freitag | 12.15-14.00 | - Online Präsenz - |
Datum | Zeit | Raum |
---|---|---|
Freitag 24.09.2021 | 12.15-14.00 Uhr | - Online Präsenz -, -- |
Freitag 01.10.2021 | 12.15-14.00 Uhr | - Online Präsenz -, -- |
Freitag 08.10.2021 | 12.15-14.00 Uhr | - Online Präsenz -, -- |
Freitag 15.10.2021 | 12.15-14.00 Uhr | - Online Präsenz -, -- |
Freitag 22.10.2021 | 12.15-14.00 Uhr | - Online Präsenz -, -- |
Freitag 29.10.2021 | 12.15-14.00 Uhr | - Online Präsenz -, -- |
Freitag 05.11.2021 | 12.15-14.00 Uhr | - Online Präsenz -, -- |
Freitag 12.11.2021 | 12.15-14.00 Uhr | - Online Präsenz -, -- |
Freitag 19.11.2021 | 12.15-14.00 Uhr | - Online Präsenz -, -- |
Freitag 26.11.2021 | 12.15-14.00 Uhr | Dies Academicus |
Freitag 03.12.2021 | 12.15-14.00 Uhr | - Online Präsenz -, -- |
Freitag 10.12.2021 | 12.15-14.00 Uhr | - Online Präsenz -, -- |
Freitag 17.12.2021 | 12.15-14.00 Uhr | - Online Präsenz -, -- |
Freitag 24.12.2021 | 12.15-14.00 Uhr | Weihnachtsferien |
Module |
Modul: Angewandte Mathematik (Bachelorstudium: Mathematik) Modul: Applications and Related Topics (Bachelor Studienfach: Computer Science) Modul: Applications and Related Topics (Bachelorstudium: Computer Science) |
Leistungsüberprüfung | Lehrveranst.-begleitend |
Hinweise zur Leistungsüberprüfung | Scores will be given in scale 1-6 by 0.5, by participation (20%), near-end-term presentation (30%), and end-term project work (50%). |
An-/Abmeldung zur Leistungsüberprüfung | Anm.: Belegen Lehrveranstaltung; Abm.: stornieren |
Wiederholungsprüfung | keine Wiederholungsprüfung |
Skala | 1-6 0,5 |
Wiederholtes Belegen | beliebig wiederholbar |
Zuständige Fakultät | Philosophisch-Naturwissenschaftliche Fakultät, studiendekanat-philnat@unibas.ch |
Anbietende Organisationseinheit | Fachbereich Mathematik |