Zur Merkliste hinzufügen
Zurück zur Auswahl

 

57366-01 - Kolloquium: Methods for Unstructured Data (3 KP)

Semester Herbstsemester 2021
Angebotsmuster unregelmässig
Dozierende Helge Liebert (helge.liebert@unibas.ch, BeurteilerIn)
Inhalt Much of human knowledge is stored in unstructured formats. This course teaches methods to process and analyze unstructured data, focusing on text data. In the first part, we review tools required for processing text data. One lecture will be dedicated to web scraping fundamentals. We then focus on the concepts underlying the transformation of unstructured data into structured formats. Finally, we study supervised models suited for the analysis of text data, as well as unsupervised models which make it possible to discover structure in unlabeled text data. Throughout the course, I will emphasize real-world applications of the techniques in research and industry.

Course outline
1. PC fundamentals
2. Regular expressions and pattern recognition.
3. Web scraping
4. Representing text as data
5. Analysis of text data: Supervised models
6. Analysis of text data: Unsupervised models
Lernziele The course aims to provide a thorough understanding of the workflow, tools and models related to the analysis of text data, and their implementation in R.
Literatur The course does not adhere strictly to a single reference. References are pointed out in the course material. The two books below serve as a general reference.

Jurafsky, D. and Martin, J. H. (2019). Speech and Language Processing (3rd ed. draft).
https://web.stanford.edu/~jurafsky/slp3/.

Hastie, T., Tibshirani, R. and Friedman, J. (2001). The elements of statistical learning: Data mining, inference, and prediction (2nd ed.). Springer, New York.
https://web.stanford.edu/~hastie/ElemStatLearn/.
Weblink Course website

 

Anmeldung zur Lehrveranstaltung Please enrol by email to Graduate School of Business and Economics <gsbe-wwz@unibas.ch> until September 15, 2021.
Unterrichtssprache Englisch
Einsatz digitaler Medien kein spezifischer Einsatz

 

Intervall Wochentag Zeit Raum
unregelmässig Siehe Einzeltermine
Bemerkungen The course is planned as an in-class course, if necessary it will be offered in hybrid form, i.e. with a simultaneous livestream or as an online presence course.

Einzeltermine

Datum Zeit Raum
Montag 20.09.2021 09.15-12.00 Uhr Wirtschaftswissenschaftliche Fakultät, Grosses PC-Labor S18 HG.37
Mittwoch 22.09.2021 14.15-18.00 Uhr Wirtschaftswissenschaftliche Fakultät, Grosses PC-Labor S18 HG.37
Donnerstag 23.09.2021 14.15-18.00 Uhr Wirtschaftswissenschaftliche Fakultät, Grosses PC-Labor S18 HG.37
Montag 27.09.2021 09.15-12.00 Uhr Wirtschaftswissenschaftliche Fakultät, Grosses PC-Labor S18 HG.37
Mittwoch 29.09.2021 14.15-18.00 Uhr Wirtschaftswissenschaftliche Fakultät, Grosses PC-Labor S18 HG.37
Donnerstag 30.09.2021 14.15-18.00 Uhr Wirtschaftswissenschaftliche Fakultät, Grosses PC-Labor S18 HG.37
Montag 04.10.2021 09.15-12.00 Uhr Wirtschaftswissenschaftliche Fakultät, Grosses PC-Labor S18 HG.37
Module Modul: Fachlich-methodische Weiterbildung (Doktoratsstudium - Wirtschaftswissenschaftliche Fakultät)
Prüfung Leistungsnachweis
Hinweise zur Prüfung Take-home assignment.
An-/Abmeldung zur Prüfung An- und Abmelden: Dozierende
Wiederholungsprüfung keine Wiederholungsprüfung
Skala 1-6 0,1
Belegen bei Nichtbestehen beliebig wiederholbar
Zuständige Fakultät Wirtschaftswissenschaftliche Fakultät / WWZ, studiendekanat-wwz@unibas.ch
Anbietende Organisationseinheit Wirtschaftswissenschaftliche Fakultät / WWZ

Zurück zur Auswahl