Zurück zur Auswahl
Semester | Herbstsemester 2023 |
Angebotsmuster | unregelmässig |
Dozierende | Aurelien Lucchi (aurelien.lucchi@unibas.ch, BeurteilerIn) |
Inhalt | The class focuses on the theoretical concepts behind Deep learning. We will discuss the following concepts: General introduction to linear networks, activations, etc Approximation Theory Complexity Theory Network Architectures Optimization Optimization Landscape of Neural Networks Neural Tangent Kernel Regularization Generalization bounds Adversarial examples |
Lernziele | The main goal is to understand the theoretical foundations of Deep Learning. This includes the following important concepts: - Universal approximation: can a neural network approximate any arbitrary function? - Optimization: how do we optimize the parameters of a neural network? what theoretical guarantees do we have about finding a good solution? - Generalization: under what conditions does the solution of a neural network generalizes to unseen data? - Adversarial robustness: how robust is a neural network to adversarial attacks? |
Bemerkungen | Exercise sessions will start the second week of the semester. |
Teilnahmevoraussetzungen | - Machine Learning (classification, regression, kernels, etc) - Linear algebra - Calculus, Basic concepts in topology - Probability theory (random variable, expectation, density, etc) - Some non-mandatory exercises will require coding in python (reasonable coding skills in another programming language should be sufficient to learn python) Note that a significant part of the class focuses on understanding theoretical aspects, we will thus be covering proofs that require a good knowledge of the mathematical concepts discussed above. |
Unterrichtssprache | Englisch |
Einsatz digitaler Medien | kein spezifischer Einsatz |
Intervall | Wochentag | Zeit | Raum |
---|---|---|---|
wöchentlich | Montag | 10.15-12.00 | Bernoullistrasse 30/32, Hörsaal 103 |
wöchentlich | Donnerstag | 16.15-18.00 | Spiegelgasse 5, Seminarraum 05.001 |
Datum | Zeit | Raum |
---|---|---|
Donnerstag 21.09.2023 | 16.15-18.00 Uhr | Spiegelgasse 5, Seminarraum 05.001 |
Montag 25.09.2023 | 10.15-12.00 Uhr | Bernoullistrasse 30/32, Hörsaal 103 |
Donnerstag 28.09.2023 | 16.15-18.00 Uhr | Spiegelgasse 5, Seminarraum 05.001 |
Montag 02.10.2023 | 10.15-12.00 Uhr | Bernoullistrasse 30/32, Hörsaal 103 |
Donnerstag 05.10.2023 | 16.15-18.00 Uhr | Spiegelgasse 5, Seminarraum 05.001 |
Montag 09.10.2023 | 10.15-12.00 Uhr | Bernoullistrasse 30/32, Hörsaal 103 |
Donnerstag 12.10.2023 | 16.15-18.00 Uhr | Spiegelgasse 5, Seminarraum 05.001 |
Montag 16.10.2023 | 10.15-12.00 Uhr | Bernoullistrasse 30/32, Hörsaal 103 |
Donnerstag 19.10.2023 | 16.15-18.00 Uhr | Spiegelgasse 5, Seminarraum 05.001 |
Montag 23.10.2023 | 10.15-12.00 Uhr | Bernoullistrasse 30/32, Hörsaal 103 |
Donnerstag 26.10.2023 | 16.15-18.00 Uhr | Spiegelgasse 5, Seminarraum 05.001 |
Montag 30.10.2023 | 10.15-12.00 Uhr | Bernoullistrasse 30/32, Hörsaal 103 |
Donnerstag 02.11.2023 | 16.15-18.00 Uhr | Spiegelgasse 5, Seminarraum 05.001 |
Montag 06.11.2023 | 10.15-12.00 Uhr | Bernoullistrasse 30/32, Hörsaal 103 |
Donnerstag 09.11.2023 | 16.15-18.00 Uhr | Spiegelgasse 5, Seminarraum 05.001 |
Montag 13.11.2023 | 10.15-12.00 Uhr | Bernoullistrasse 30/32, Hörsaal 103 |
Donnerstag 16.11.2023 | 16.15-18.00 Uhr | Spiegelgasse 5, Seminarraum 05.001 |
Montag 20.11.2023 | 10.15-12.00 Uhr | Bernoullistrasse 30/32, Hörsaal 103 |
Donnerstag 23.11.2023 | 16.15-18.00 Uhr | Spiegelgasse 5, Seminarraum 05.001 |
Montag 27.11.2023 | 10.15-12.00 Uhr | Bernoullistrasse 30/32, Hörsaal 103 |
Donnerstag 30.11.2023 | 16.15-18.00 Uhr | Spiegelgasse 5, Seminarraum 05.001 |
Montag 04.12.2023 | 10.15-12.00 Uhr | Bernoullistrasse 30/32, Hörsaal 103 |
Donnerstag 07.12.2023 | 16.15-18.00 Uhr | Spiegelgasse 5, Seminarraum 05.001 |
Montag 11.12.2023 | 10.15-12.00 Uhr | Bernoullistrasse 30/32, Hörsaal 103 |
Donnerstag 14.12.2023 | 16.15-18.00 Uhr | Spiegelgasse 5, Seminarraum 05.001 |
Montag 18.12.2023 | 10.15-12.00 Uhr | Bernoullistrasse 30/32, Hörsaal 103 |
Donnerstag 21.12.2023 | 16.15-18.00 Uhr | Spiegelgasse 5, Seminarraum 05.001 |
Module |
Doktorat Informatik: Empfehlungen (Promotionsfach: Informatik) Modul: Applications of Distributed Systems (Masterstudium: Computer Science) Modul: Applications of Machine Intelligence (Masterstudium: Computer Science) Modul: Concepts of Machine Intelligence (Masterstudium: Computer Science) Modul: Electives in Data Science (Masterstudium: Data Science) Modul: Machine Learning Foundations (Masterstudium: Data Science) Modul: Methods of Machine Intelligence (Masterstudium: Computer Science) |
Prüfung | Lehrveranst.-begleitend |
Hinweise zur Prüfung | Continuous assessment Note the following split: 30% homework 30% project (writeup and presentation) 40% written exam A 50% score on HW sets is required to participate in the final exam. Expected date: Thursday, February 1, 2024, 10-12 a.m. |
An-/Abmeldung zur Prüfung | Anm.: Belegen Lehrveranstaltung; Abm.: stornieren |
Wiederholungsprüfung | keine Wiederholungsprüfung |
Skala | 1-6 0,5 |
Belegen bei Nichtbestehen | beliebig wiederholbar |
Zuständige Fakultät | Philosophisch-Naturwissenschaftliche Fakultät, studiendekanat-philnat@unibas.ch |
Anbietende Organisationseinheit | Fachbereich Informatik |