Zur Merkliste hinzufügen


48882-01 - Vorlesung mit Übungen: Applied control 5 KP

Semester Frühjahrsemester 2022
Angebotsmuster Jedes Frühjahrsem.
Dozierende Nicolas Gerig (nicolas.gerig@unibas.ch)
Georg Rauter (georg.rauter@unibas.ch, BeurteilerIn)
Inhalt The lecture is split into a lecture part, where students learn theoretical aspects on control and a practical part where they apply their knowledge on a real robotic system.

The lecture will build upon basics in continuous linear time-invariant systems (LTI-systems, taught in 26937-01_Data Processing and Control). Starting with time discrete systems, the students will learn transforming time continuous systems to time discrete ones, see how to design simple controllers (PID), will employ Bode plots for control design according to certain requirements (cutoff frequency, phase margin, remaining error), test stability of systems using the Nyquist criterium.
Furthermore, the students will learn about state transform and the invariance of transfer functions on state transform. The state transform consecutively used to bring control systems to first and second standard form to derive observability and controlability criteria. In a final theoretical part of the lecture, the students will learn about state control based on controller-canonical form, stabilization around an arbitrary operating point, observers, and finally Kalman filter.

In the practical part of the lecture, the students will work in groups on an inverted pendulum setup using Matlab/Simulink and TwinCAT3. The task will be to design controllers to swing the pendulum up in a first case and to keep it upright in a second case. The students should design at least 2 different controllers to maintain the pendulum upright despite of disturbances and compare their controllers' performance.
Lernziele The goal is to make students aware of a variety of different control principles for linear time-invariant systems (LTI-systems), their advantages and disadvantages. The knowledge is supported by practical examples tested in Matlab/Simulink and TwinCAT3 on a real robot (inverted pendulum)
Literatur Control Systems 1 (IRT at TU-Graz, Austria)

Control Systems 2 (IRT at TU-Graz, Austria)

Hans Peter Geering, Regelungstechnik: Mathematische Grundlagen, Entwurfsmethoden, Beispiele, Springer

Hans Peter Geering, Optimal Control with Engineering Applications, Springer

The following literature exceeds the content of the lecture, but is recommended for the interested reader for his/her future lectures or work in the field of control:

FiOrdOs http://fiordos.ethz.ch/dokuwiki/doku.php

T. Murakami, F. Yu, and K. Ohnishi, “Torque sensorless control in
multidegree-of-freedom manipulator,” IEEE Transactions on Industrial
Electronics, vol. 40, no. 2, pp. 259–265, 1993.

A. Kato and K. Ohnishi, “Robust force sensorless control in motion
control system,” 9th IEEE International Workshop on Advanced Motion
Control, 2006., pp. 165–170, 2006.

J. C. Hsu, A. U. Mayer, Modern Control Principles and Applications, McGraw Hill, New York, 1968

M. Athans, P. L. Falb, Optimal Control, McGraw Hill, New York, 1966

M. Papageorgiou, Optimierung, Oldenbourg Verlag, München, 1991

O. Föllinger, Optimierung dynamischer Systeme - eine Einführung für Ingenieure, R. Oldenbourg Verlag, München, 1985

Dimitri P. Bertsekas, Dynamic Programming and Optimal Control, Athena Scientific
Weblink DBE


Teilnahmebedingungen Students should have prior knowledge on basic control theory:
required course (or equivalents):
26937-01 - Lecture with practical courses: Data processing and control 4 CP
55664-01 - Blockkurs: Rapid prototyping for measurement systems, automation, control, artificial intelligence, and virtual reality 2 CP
Unterrichtssprache Englisch
Einsatz digitaler Medien kein spezifischer Einsatz
HörerInnen willkommen


Intervall wöchentlich
Datum 21.02.2022 – 30.05.2022
Zeit Montag, 09.15-12.00 Gewerbestrasse 14
Datum Zeit Raum
Montag 21.02.2022 09.15-12.00 Uhr --, --
Montag 28.02.2022 09.15-12.00 Uhr --, --
Montag 07.03.2022 09.15-12.00 Uhr Fasnachtsferien
Montag 14.03.2022 09.15-12.00 Uhr --, --
Montag 21.03.2022 09.15-12.00 Uhr --, --
Montag 28.03.2022 09.15-12.00 Uhr --, --
Montag 04.04.2022 09.15-12.00 Uhr --, --
Montag 11.04.2022 09.15-12.00 Uhr --, --
Montag 18.04.2022 09.15-12.00 Uhr Ostern
Montag 25.04.2022 09.15-12.00 Uhr --, --
Montag 02.05.2022 09.15-12.00 Uhr --, --
Montag 09.05.2022 09.15-12.00 Uhr --, --
Montag 16.05.2022 09.15-12.00 Uhr --, --
Montag 23.05.2022 09.15-12.00 Uhr --, --
Montag 30.05.2022 09.15-12.00 Uhr --, --
Module Doktorat Biomedizinische Technik: Empfehlungen (Promotionsfach Biomedizinische Technik)
Modul: Image-Guided Therapy (Masterstudium: Biomedical Engineering)
Leistungsüberprüfung Leistungsnachweis
Hinweise zur Leistungsüberprüfung Form: 2 homework assignments, group work, oral exam

The students will have to hand in homework for the lectures until the end of the semester. 80% of the homework should be evaluated positive. In addition, the students have to complete practical work on a robotic system using Matlab/Simulink and TwinCAT3 during the semester (can be accomplished in small groups). The combination of Matlab/Simulink and TwinCAT3 is taught in a preeceeding block course one week before the beginning of every semester (55664-01 - Block course) and is therefore a requirement for attending this course.

The homework and practical work will be discussed individually during an oral exam at the end of the semester.
An-/Abmeldung zur Leistungsüberprüfung Anm.: Belegen Lehrveranstaltung; Abm.: stornieren
Wiederholungsprüfung eine Wiederholung, bester Versuch zählt
Skala 1-6 0,5
Wiederholtes Belegen beliebig wiederholbar
Zuständige Fakultät Medizinische Fakultät
Anbietende Organisationseinheit Departement Biomedical Engineering (DBE)