Zur Merkliste hinzufügen


54857-01 - Kolloquium: Machine Learning for Economists and Business Analysts 3 KP

Semester Frühjahrsemester 2022
Angebotsmuster unregelmässig
Dozierende Anthony Strittmatter (anthony.strittmatter@unibas.ch, BeurteilerIn)
Inhalt Machine learning estimation methods gain more and more popularity. Compared to conventional estimation methods, machine learning can solve statistical prediction tasks in a data adaptive way. Furthermore, machine learning can deal with high-dimensional variable spaces in a relatively flexible way. Prediction methods are used in many different business and economic domains. Examples of prediction tasks are: The prediction of sales for a grocery store, such that logisticians can ship products before they are sold. The prediction of the probability to become drug addicted later in life, such that drug prevention programs can be targeted at adolescents with high risk.

Besides predictions, economists and managers are often interested in causal questions. Examples of causal questions are: What are the effects of tweets by Elon Musk on Bitcoins? What impact has lowering the central bank interest rate on GDP? Does participation in training programs reduce the unemployment duration? Machine learning cannot give us an automatic answer to causal questions without using an empirical design. However, machine learning estimates can serve as input factors for these empirical designs. Furthermore, we can estimate heterogeneous effects with machine learning.

The course covers different predictive and causal machine learning methods. A focus will be on the application of these methods in practical R programming session.

Predictive Machine Learning:
- Regularized Regression
- Trees and Forests
- Unsupervised Machine Learning

Causal Machine Learning
- Double Selection Procedure
- Debiased Machine Learning
- Causal Forests
- Optimal Policy Learning
- Reinforcement Learning

Lernziele 1) Students can distinguish between questions that can be answered with predictive and causal methods.

2) Students can implement predictive machine learning estimators in R.

3) Students can deploy machine learning methods to account for control variables.

4) Students can estimate heterogeneous effects with causal forests.

5) Students know different machine learning approaches that can be used to estimate decision rules and can apply these approaches to economic and business problems.
Literatur James, Witten, Hastie, and Tibshirani (2014) "An Introduction to Statistical Learning", Springer. Free download: http://www-bcf.usc.edu/~gareth/ISL/

Sendhil Mullainathan and Jann Spiess, 2017, Machine Learning: An Applied Econometric Approach, Journal of Economic Perspectives, 31(2), 67-106.

Susan Athey, 2017, Beyond Prediction: Using Big Data for Policy Problems, Science, 335 (6324), 483-485.

Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whitney Newey, 2017, Double/Debiased/Neyman Machine Learning of Treatment Effects, American Economic Review, 107(5), 261-265.

More literature references will be provided during the lecture
Bemerkungen The course is for business and economics students.
Weblink Weblink to ADAM


Teilnahmebedingungen Basic knowledge of statistics and econometrics.
Anmeldung zur Lehrveranstaltung Registration: Please enrol in MOnA. EUCOR-Students and students of other Swiss Universities have to enrol at the students administration office (studseksupport1@unibas.ch) within the official enrolment period. Enrolment = Registration for the exam!
The course is limited to 24 participants. If an admission should not be possible for this reason, you will be notified after the deadline for enrollment, i.e. on March 22, 2022.
Unterrichtssprache Englisch
Einsatz digitaler Medien kein spezifischer Einsatz
HörerInnen willkommen


Intervall unregelmässig
Datum 30.03.2022 – 13.04.2022
Zeit Siehe Detailangaben
Datum Zeit Raum
Mittwoch 30.03.2022 14.15-18.00 Uhr Wirtschaftswissenschaftliche Fakultät, Seminarraum S16 HG.39
Donnerstag 31.03.2022 08.30-12.00 Uhr Wirtschaftswissenschaftliche Fakultät, Seminarraum S16 HG.39
Freitag 01.04.2022 08.30-12.00 Uhr Wirtschaftswissenschaftliche Fakultät, Seminarraum S16 HG.39
Montag 11.04.2022 08.30-12.00 Uhr Wirtschaftswissenschaftliche Fakultät, Seminarraum S14 HG.32
Dienstag 12.04.2022 14.15-18.00 Uhr Wirtschaftswissenschaftliche Fakultät, Seminarraum S16 HG.39
Mittwoch 13.04.2022 14.15-18.00 Uhr Wirtschaftswissenschaftliche Fakultät, Seminarraum S16 HG.39
Module Modul: Fachlich-methodische Weiterbildung (Doktoratsstudium - Wirtschaftswissenschaftliche Fakultät)
Leistungsüberprüfung Leistungsnachweis
Hinweise zur Leistungsüberprüfung Individual Home Assignment
An-/Abmeldung zur Leistungsüberprüfung Anm.: Belegen Lehrveranstaltung; Abm.: stornieren
Wiederholungsprüfung keine Wiederholungsprüfung
Skala Pass / Fail
Wiederholtes Belegen beliebig wiederholbar
Zuständige Fakultät Wirtschaftswissenschaftliche Fakultät / WWZ, studiendekanat-wwz@unibas.ch
Anbietende Organisationseinheit Wirtschaftswissenschaftliche Fakultät / WWZ