Zur Merkliste hinzufügen
Zurück

 

66937-01 - Vorlesung mit Übungen: Foundations of Deep Learning 6 KP

Semester Herbstsemester 2022
Angebotsmuster unregelmässig
Dozierende Aurelien Lucchi (aurelien.lucchi@unibas.ch, BeurteilerIn)
Inhalt The class focuses on the theoretical concepts behind Deep learning. We will discuss the following concepts:

General introduction to linear networks, activations, etc
Approximation Theory
Complexity Theory
Network Architectures
Optimization
Optimization Landscape of Neural Networks
Neural Tangent Kernel
Regularization
Generalization bounds
Adversarial examples
Lernziele The main goal is to understand the theoretical foundations of Deep Learning.
This includes the following important concepts:
- Universal approximation: can a neural network approximate any arbitrary function?
- Optimization: how do we optimize the parameters of a neural network? what theoretical guarantees do we have about finding a good solution?
- Generalization: under what conditions does the solution of a neural network generalizes to unseen data?
- Adversarial robustness: how robust is a neural network to adversarial attacks?
Bemerkungen Exercise sessions will start the second week of the semester.

 

Teilnahmebedingungen - Machine Learning (classification, regression, kernels, etc)
- Linear algebra
- Calculus, Basic concepts in topology
- Probability theory (random variable, expectation, density, etc)
- Some non-mandatory exercises will require coding in python (reasonable coding skills in another programming language should be sufficient to learn python)

Note that a significant part of the class focuses on understanding theoretical aspects, we will thus be covering proofs that require a good knowledge of the mathematical concepts discussed above.
Unterrichtssprache Englisch
Einsatz digitaler Medien kein spezifischer Einsatz

 

Intervall wöchentlich
Datum 19.09.2022 – 22.12.2022
Zeit Montag, 10.15-12.00 Bernoullistrasse 30/32, Hörsaal 103
Donnerstag, 16.15-18.00 Spiegelgasse 5, Seminarraum 05.001
Datum Zeit Raum
Montag 19.09.2022 10.15-12.00 Uhr Bernoullistrasse 30/32, Hörsaal 103
Donnerstag 22.09.2022 16.15-18.00 Uhr Spiegelgasse 5, Seminarraum 05.001
Montag 26.09.2022 10.15-12.00 Uhr Bernoullistrasse 30/32, Hörsaal 103
Donnerstag 29.09.2022 16.15-18.00 Uhr Spiegelgasse 5, Seminarraum 05.001
Montag 03.10.2022 10.15-12.00 Uhr Bernoullistrasse 30/32, Hörsaal 103
Donnerstag 06.10.2022 16.15-18.00 Uhr Spiegelgasse 5, Seminarraum 05.001
Montag 10.10.2022 10.15-12.00 Uhr Bernoullistrasse 30/32, Hörsaal 103
Donnerstag 13.10.2022 16.15-18.00 Uhr Spiegelgasse 5, Seminarraum 05.001
Montag 17.10.2022 10.15-12.00 Uhr Bernoullistrasse 30/32, Hörsaal 103
Donnerstag 20.10.2022 16.15-18.00 Uhr Spiegelgasse 5, Seminarraum 05.001
Montag 24.10.2022 10.15-12.00 Uhr Bernoullistrasse 30/32, Hörsaal 103
Donnerstag 27.10.2022 16.15-18.00 Uhr Spiegelgasse 5, Seminarraum 05.001
Montag 31.10.2022 10.15-12.00 Uhr Bernoullistrasse 30/32, Hörsaal 103
Donnerstag 03.11.2022 16.15-18.00 Uhr Spiegelgasse 5, Seminarraum 05.001
Montag 07.11.2022 10.15-12.00 Uhr Bernoullistrasse 30/32, Hörsaal 103
Donnerstag 10.11.2022 16.15-18.00 Uhr Spiegelgasse 5, Seminarraum 05.001
Montag 14.11.2022 10.15-12.00 Uhr Bernoullistrasse 30/32, Hörsaal 103
Donnerstag 17.11.2022 16.15-18.00 Uhr Spiegelgasse 5, Seminarraum 05.001
Montag 21.11.2022 10.15-12.00 Uhr Bernoullistrasse 30/32, Hörsaal 103
Donnerstag 24.11.2022 16.15-18.00 Uhr Spiegelgasse 5, Seminarraum 05.001
Montag 28.11.2022 10.15-12.00 Uhr Bernoullistrasse 30/32, Hörsaal 103
Donnerstag 01.12.2022 16.15-18.00 Uhr Spiegelgasse 5, Seminarraum 05.001
Montag 05.12.2022 10.15-12.00 Uhr Bernoullistrasse 30/32, Hörsaal 103
Donnerstag 08.12.2022 16.15-18.00 Uhr Spiegelgasse 5, Seminarraum 05.001
Montag 12.12.2022 10.15-12.00 Uhr Bernoullistrasse 30/32, Hörsaal 103
Donnerstag 15.12.2022 16.15-18.00 Uhr Spiegelgasse 5, Seminarraum 05.001
Montag 19.12.2022 10.15-12.00 Uhr Bernoullistrasse 30/32, Hörsaal 103
Donnerstag 22.12.2022 16.15-18.00 Uhr Spiegelgasse 5, Seminarraum 05.001
Module Doktorat Informatik: Empfehlungen (Promotionsfach Informatik)
Modul: Applications of Distributed Systems (Masterstudium: Computer Science)
Modul: Applications of Machine Intelligence (Masterstudium: Computer Science)
Modul: Concepts of Machine Intelligence (Masterstudium: Computer Science)
Modul: Electives in Data Science (Masterstudium: Data Science)
Modul: Machine Learning Foundations (Masterstudium: Data Science)
Modul: Methods of Machine Intelligence (Masterstudium: Computer Science)
Leistungsüberprüfung Lehrveranst.-begleitend
Hinweise zur Leistungsüberprüfung Continuous assessment

Note the following split:
30% homework
30% project (writeup and presentation)
40% written exam

A 50% score on HW sets is required to participate in the final exam.

Expected date: Tuesday, 31 January 2023, 10-12 a.m., room 00.003, Spiegelgasse 1.
An-/Abmeldung zur Leistungsüberprüfung An-/Abmelden: Belegen resp. Stornieren der Belegung via MOnA
Wiederholungsprüfung keine Wiederholungsprüfung
Skala 1-6 0,5
Wiederholtes Belegen beliebig wiederholbar
Zuständige Fakultät Philosophisch-Naturwissenschaftliche Fakultät, studiendekanat-philnat@unibas.ch
Anbietende Organisationseinheit Fachbereich Informatik

Zurück