Zur Merkliste hinzufügen


32934-01 - Vorlesung: Optimization and AI 3 KP

Semester Frühjahrsemester 2023
Angebotsmuster Jedes Frühjahrsem.
Dozierende Dietmar Maringer (dietmar.maringer@unibas.ch, BeurteilerIn)
Inhalt Many fields in business and economics involve optimization problems. This course covers traditional (numerical) optimization methods, based on deterministic algorithms, such as gradient-based and gradient-free methods, or concepts from constraint-satisfaction. These mehods are highly efficient in some circumstances, but they also have their limits: They are no longer reliable when objective functions have more than one optimum, special constraints or requirements need to be satisfied, or the nature oft he problem is simply too complex. For these cases, meta-heuristics and artificial intelligence (AI) inspired concepts can be used. We will look into simple stochastic methods like Monte Carlo Search and Simulated Annealing/Threshold Accepting, but also into population based methods that mimic evolutionary processes or swarm intelligence.

To deepen the participants' understanding of these methods, their practical application, their strengths and limitations, the course is very much hands-on, allowing for numerous own implementations and experiments.
Lernziele Successful participants should be familiar with numerical and computational methods for simple and demanding optimization problems. Also, they will improve their programming skills with special emphasis on the implementation of economic / management models and related methods.
Literatur Lecture material will be provided. There is no designated textbook, but to get a flavor of the topics or to deepen their knowledge, (prospective) participants might find the following books (in alphabetical order) helpful:

*) Gilli, M.; Maringer, D. & Schumann, E. Numerical Methods and Optimization in Finance, Academic Press, 2nd edition 2019. (or 1st ed., 2011)

*) Michalewicz, Z. & Fogel, D. B. How to Solve It: Modern Heuristics, Springer, 2005

*) Brabazon, A.; O'Neill, M. & McGarraghy, S. Natural Computing Algorithms, Springer, 2015

*) Hillier, F. & Liebermann, G., Introduction to Operations Research, McGraw-Hill, 11th ed., 2019.

*) Miranda, M. J. & Fackler, P. L. Applied Computational Economics and Finance The MIT Press, 2002

*) Brandimarte, P. Numerical Methods in Finance and Economics, Wiley-Interscience, 2006

Specific recommendations and additional literature to be announced during the course. how these can be setup, implemented, and analysed.
Weblink Weblink


Teilnahmebedingungen *) 58989 Computing for Business and Economics (or equivalent)
*) basic Python programming skills

Anmeldung zur Lehrveranstaltung To register for the course, including the exam, please fill out the registration form, which you can find under the following link: https://adam.unibas.ch/goto.php?target=crs_1489584_rcodeAQ3RADjLh2&client_id=adam.
Registration is possible from January 1 to February 21, 2023, 8 p.m. at the latest. Please note that you are re-registered for spring semester 2023 and that the tuition fees are paid at the time of registration.
A deregistration is possible until March 9, 2023 8pm by Email to gregor.lenhard@unibas.ch..

Your enrollment in the Online Services will automatically be registered, but only after the official enrollment deadline, i.e. after March 20, 2023.

Unterrichtssprache Englisch
Einsatz digitaler Medien kein spezifischer Einsatz


Intervall wöchentlich
Datum 23.02.2023 – 17.03.2023
Zeit Donnerstag, 14.15-18.00 Wirtschaftswissenschaftliche Fakultät, Grosses PC-Labor S18 HG.37
Freitag, 10.15-14.00 Wirtschaftswissenschaftliche Fakultät, Grosses PC-Labor S18 HG.37
Datum Zeit Raum
Donnerstag 23.02.2023 14.15-18.00 Uhr Wirtschaftswissenschaftliche Fakultät, Grosses PC-Labor S18 HG.37
Freitag 24.02.2023 10.15-14.00 Uhr Wirtschaftswissenschaftliche Fakultät, Grosses PC-Labor S18 HG.37
Donnerstag 02.03.2023 14.15-18.00 Uhr Fasnachstferien
Freitag 03.03.2023 10.15-14.00 Uhr Fasnachstferien
Donnerstag 09.03.2023 14.15-18.00 Uhr Wirtschaftswissenschaftliche Fakultät, Grosses PC-Labor S18 HG.37
Freitag 10.03.2023 10.15-14.00 Uhr Wirtschaftswissenschaftliche Fakultät, Grosses PC-Labor S18 HG.37
Donnerstag 16.03.2023 14.15-18.00 Uhr Wirtschaftswissenschaftliche Fakultät, Grosses PC-Labor S18 HG.37
Freitag 17.03.2023 10.15-14.00 Uhr Wirtschaftswissenschaftliche Fakultät, Grosses PC-Labor S18 HG.37
Module Modul: Field Electives in Economics and Public Policy (Masterstudium: Economics and Public Policy)
Modul: Risiko-Analyse (Masterstudium: Actuarial Science)
Modul: Specific Electives in Data Science and Computational Economics (Masterstudium: Wirtschaftswissenschaften)
Modul: Technology Field (Masterstudium: Business and Technology)
Spezialisierungsmodul: Areas of Specialization in International and/or Monetary Economics (Masterstudium: International and Monetary Economics)
Vertiefungsmodul: Quantitative Methods (Masterstudium: Wirtschaftswissenschaften (Studienbeginn vor 01.08.2021))
Leistungsüberprüfung Leistungsnachweis
Hinweise zur Leistungsüberprüfung Combination of active participation, assignment(s), and final exam.

An-/Abmeldung zur Leistungsüberprüfung An- und Abmelden: Dozierende
Wiederholungsprüfung keine Wiederholungsprüfung
Skala 1-6 0,1
Wiederholtes Belegen beliebig wiederholbar
Zuständige Fakultät Wirtschaftswissenschaftliche Fakultät / WWZ, studiendekanat-wwz@unibas.ch
Anbietende Organisationseinheit Wirtschaftswissenschaftliche Fakultät / WWZ