Zur Merkliste hinzufügen
Zurück

 

22738-01 - Hauptvorlesung: Iterative Verfahren der Numerik 4 KP

Semester Herbstsemester 2023
Angebotsmuster Jedes 2. Herbstsem.
Dozierende Helmut Harbrecht (helmut.harbrecht@unibas.ch, BeurteilerIn)
Inhalt - Iterative Verfahren zur Lösung grosser dünnbesetzter Gleichungssysteme: CG, GMRES
- Iterative Verfahren zur Lösung nichtlinearer Optimierungsaufgaben: Newton, quasi-Newton, Gauss-Newton, BFGS
- Inverse Probleme: SVD, Regularisierung
- Numerische Berechnung von Eigenwerten: Vektoriteration, QR-Verfahren, Lanczos-Verfahren
Literatur (eine kleine Auswahl an) Literatur zur Vorlesung:

- Kanzow, Ch.: Numerik linearer Gleichungssysteme, Springer-Verlag, Wiesbaden, 2005
- Meister, A.: Numerik linearer Gleichungssysteme, Vieweg-Verlag, Wiesbaden, 1999
- Stoer, J.: Einführung in die Numerische Mathematik I, Springer-Verlag, Berlin 1983
- Stoer, J. & Bulirsch, R.: Einführung in die Numerische Mathematik II, Springer-Verlag, Berlin 1973
- Golub, G. & Van Load, Ch.: Matrix Computations, Johns Hopkins University Press, 2013
- Nocedal, J. & Wright, S.: Numerical optimization, Springer Science & Business Media, 2006
- Greenbaum, A.: Iterative methods for solving linear systems, SIAM, 1997
- Ortega, J.: Numerical analysis: a second course, SIAM, 1990
Weblink Informationen

 

Teilnahmebedingungen Einführung in die Numerik wird vorausgesetzt sowie Grundkenntnisse in der Analysis und Linearen Algebra (Analysis I & II und Lin. Alg. I & II oder MM I-II) und in der Matlab-Programmierung.
Unterrichtssprache Deutsch
Einsatz digitaler Medien kein spezifischer Einsatz
HörerInnen willkommen

 

Intervall Wochentag Zeit Raum
wöchentlich Montag 14.15-16.00 Kollegienhaus, Hörsaal 119
wöchentlich Dienstag 10.15-12.00 Alte Universität, Seminarraum -201

Einzeltermine

Datum Zeit Raum
Montag 18.09.2023 14.15-16.00 Uhr Kollegienhaus, Hörsaal 119
Dienstag 19.09.2023 10.15-12.00 Uhr Alte Universität, Seminarraum -201
Montag 25.09.2023 14.15-16.00 Uhr Kollegienhaus, Hörsaal 119
Dienstag 26.09.2023 10.15-12.00 Uhr Alte Universität, Seminarraum -201
Montag 02.10.2023 14.15-16.00 Uhr Kollegienhaus, Hörsaal 119
Dienstag 03.10.2023 10.15-12.00 Uhr Alte Universität, Seminarraum -201
Montag 09.10.2023 14.15-16.00 Uhr Kollegienhaus, Hörsaal 119
Dienstag 10.10.2023 10.15-12.00 Uhr Alte Universität, Seminarraum -201
Montag 16.10.2023 14.15-16.00 Uhr Kollegienhaus, Hörsaal 119
Dienstag 17.10.2023 10.15-12.00 Uhr Alte Universität, Seminarraum -201
Montag 23.10.2023 14.15-16.00 Uhr Kollegienhaus, Hörsaal 119
Dienstag 24.10.2023 10.15-12.00 Uhr Alte Universität, Seminarraum -201
Montag 30.10.2023 14.15-16.00 Uhr Kollegienhaus, Hörsaal 119
Dienstag 31.10.2023 10.15-12.00 Uhr Alte Universität, Seminarraum -201
Montag 06.11.2023 14.15-16.00 Uhr Kollegienhaus, Hörsaal 119
Dienstag 07.11.2023 10.15-12.00 Uhr Alte Universität, Seminarraum -201
Montag 13.11.2023 14.15-16.00 Uhr Kollegienhaus, Hörsaal 119
Dienstag 14.11.2023 10.15-12.00 Uhr Alte Universität, Seminarraum -201
Montag 20.11.2023 14.15-16.00 Uhr Kollegienhaus, Hörsaal 119
Dienstag 21.11.2023 10.15-12.00 Uhr Alte Universität, Seminarraum -201
Montag 27.11.2023 14.15-16.00 Uhr Kollegienhaus, Hörsaal 119
Dienstag 28.11.2023 10.15-12.00 Uhr Alte Universität, Seminarraum -201
Montag 04.12.2023 14.15-16.00 Uhr Kollegienhaus, Hörsaal 119
Dienstag 05.12.2023 10.15-12.00 Uhr Alte Universität, Seminarraum -201
Montag 11.12.2023 14.15-16.00 Uhr Kollegienhaus, Hörsaal 119
Dienstag 12.12.2023 10.15-12.00 Uhr Alte Universität, Seminarraum -201
Montag 18.12.2023 14.15-16.00 Uhr Kollegienhaus, Hörsaal 119
Dienstag 19.12.2023 10.15-12.00 Uhr Alte Universität, Seminarraum -201
Module Modul: Angewandte Mathematik (Bachelorstudium: Mathematik)
Modul: Computational Mathematics (Bachelorstudium: Computational Sciences)
Modul: Computational Mathematics (Bachelorstudium: Computational Sciences)
Modul: Computational Mathematics (Bachelorstudium: Computational Sciences)
Modul: Computational Mathematics (Bachelorstudium: Computational Sciences)
Modul: Computational Mathematics (Bachelorstudium: Computational Sciences)
Modul: Computational Mathematics (Bachelorstudium: Computational Sciences (Studienbeginn vor 01.08.2023))
Modul: Mathematical Foundations (Masterstudium: Data Science)
Leistungsüberprüfung Examen
Hinweise zur Leistungsüberprüfung Mündliche Prüfung
An-/Abmeldung zur Leistungsüberprüfung Anm.: in 'Belegungen'; Abm.: bei Studiendek. schriftlich
Wiederholungsprüfung eine Wiederholung, bester Versuch zählt
Skala 1-6 0,5
Wiederholtes Belegen nicht wiederholbar
Zuständige Fakultät Philosophisch-Naturwissenschaftliche Fakultät, studiendekanat-philnat@unibas.ch
Anbietende Organisationseinheit Fachbereich Mathematik

Zurück