Zur Merkliste hinzufügen
Zurück

 

10538-01 - Vorlesung mit Übungen: Statistics II: Reporting analysis 5 KP

Semester Frühjahrsemester 2024
Angebotsmuster Jedes Frühjahrsem.
Dozierende Catherine Blatter (catherine.blatter@unibas.ch)
Sarah Musy (sarah.musy@unibas.ch)
Michael Simon (m.simon@unibas.ch, BeurteilerIn)
Diana Trutschel (diana.trutschel@unibas.ch)
Inhalt • A lecture-seminar-exercise format will be used, with 30-60 minute lectures, 60 minute seminars and 60 minute exercises.
• Introduction to common statistical analysis such as exploratory data analysis, applied regression analysis, and common psychometric analyses explored with examples from health and nursing sciences.
• Development, execution and documentation of a statistical analysis.
• Implement robust processes for conducting and reporting the analysis.
• Practical training in R programming and analytical techniques.
Lernziele Statistics is ubiquitous in medical and nursing research. Clinicians and nurse researchers need to understand basic statistical concepts, be able to interpret statistical results and conduct basic statistical analyses themselves. The course "Statistics II: Reporting analysis " is the second part of a course to learn statistics and to apply it in the statistical programming language R. The second part of this series focusses on planning and conducting analyses in health research.
The course will provide students the basis to understand and apply basic statistical techniques in the context of nursing research.
With the successful completion of the course students will be able to:
1. Understand basic concepts of statistics
2. Developing and applying a basic analytical plan
3. Implement statistical reporting for research papers
4. Apply principles of reproducible research
Literatur Please bring your own laptop with installed R and RStudio.
1) Install R: https://cran.r-project.org/
2) Install RStudio: https://posit.co/download/rstudio-desktop/

It is expected that students know how to import data into R and do basic data manipulation. We recommend to revise the material from Statistics I: Basic concepts.

Helpful Sources
R reference card on ADAM
Cheat sheets on ADAM

Not mandatory books:
Fox, J., & Weisberg, S. (2010). An R companion to applied regression. Sage.
Gelman, A., & Hill, J. (2006). Data analysis using regression and multilevel/hierarchical models: Cambridge University Press.

Literature in preparation of lectures will be posted online on ADAM.
Weblink Login ADAM

 

Teilnahmebedingungen Nur für Studierende aus dem Studiengang Pflegewissenschaft.
Successful participation in “10537 - Statistics I".
Anmeldung zur Lehrveranstaltung Anmelden: Belegen; Abmelden: Institut
Unterrichtssprache Englisch
Einsatz digitaler Medien Online-Angebot obligatorisch

 

Intervall Wochentag Zeit Raum
wöchentlich Montag 09.15-12.00 Kollegienhaus, Hörsaal 117

Einzeltermine

Datum Zeit Raum
Montag 26.02.2024 09.15-12.00 Uhr Kollegienhaus, Hörsaal 117
Montag 04.03.2024 09.15-12.00 Uhr Kollegienhaus, Hörsaal 117
Montag 11.03.2024 09.15-12.00 Uhr Kollegienhaus, Hörsaal 117
Montag 18.03.2024 09.15-12.00 Uhr Kollegienhaus, Hörsaal 117
Montag 25.03.2024 09.15-12.00 Uhr Kollegienhaus, Hörsaal 117
Montag 01.04.2024 09.15-12.00 Uhr Ostern
Montag 08.04.2024 09.15-12.00 Uhr Kollegienhaus, Hörsaal 117
Montag 15.04.2024 09.15-12.00 Uhr Kollegienhaus, Hörsaal 117
Montag 22.04.2024 09.15-12.00 Uhr Kollegienhaus, Hörsaal 117
Montag 29.04.2024 09.15-12.00 Uhr Kollegienhaus, Hörsaal 117
Montag 06.05.2024 09.15-12.00 Uhr Kollegienhaus, Hörsaal 117
Montag 13.05.2024 09.15-12.00 Uhr Kollegienhaus, Hörsaal 117
Montag 20.05.2024 09.15-12.00 Uhr Pfingstmontag
Montag 27.05.2024 09.15-17.00 Uhr Bernoullistrasse 28, Seminarraum U01
Montag 03.06.2024 09.15-17.00 Uhr Bernoullistrasse 28, Seminarraum 7
Module Modul Grundkenntnisse der quantitativen und qualitativen Forschung (Masterstudium: Pflegewissenschaft)
Leistungsüberprüfung Lehrveranst.-begleitend
Hinweise zur Leistungsüberprüfung The exams consist of a data preparation (20% of the course grade), a descriptive analysis (20% of the course grade), an inferential analysis (20% of the course grade), and an oral exam (40% of the course grade).

Please be aware it is not possible to repeat any of the exam's sections.

Die mündlichen Prüfungen finden an zwei Tagen statt, Details folgen.
An-/Abmeldung zur Leistungsüberprüfung Anmelden: Belegen; Abmelden: Institut
Wiederholungsprüfung keine Wiederholungsprüfung
Skala 1-6 0,1
Wiederholtes Belegen einmal wiederholbar
Zuständige Fakultät Medizinische Fakultät
Anbietende Organisationseinheit Institut für Pflegewissenschaft

Zurück