Zur Merkliste hinzufügen


10616-01 - Vorlesung: Applied Machine Learning 3 KP

Semester Frühjahrsemester 2024
Angebotsmuster Jedes Frühjahrsem.
Dozierende Dietmar Maringer (dietmar.maringer@unibas.ch, BeurteilerIn)
Inhalt To counteract the "data-rich, information-poor" ("DRIP") syndrome, this course covers concepts for data analysis and techniques for finding structure in data and, ideally, extracting information. Typical applications are classification, clustering and dimension reduction. Methods include nonlinear methods; perceptrons and neural networks; support vector machines; and tree-, kernel- or rule-based methods, and generative methods.

In addition to theoretical presentations, numerous practical applications are carried out. Special attention is paid to data preprocessing, model validation, and model selection.
Lernziele Solid understanding of key machine learning techniques, their advantages and limitations, and application skills.
Literatur Lecture material will be provided. There is no designated textbook, but quite a few books participants might find helpful. These include (in alphabetical order):

*) E. Alpaydin, Introduction to Machine Learning, 4th ed., MIT Press 2020.

*) B.S. Everitt and T. Hothorn. An Introduction to Applied Multivariate Analysis with R. Springer, 2011.

*) B.S. Everitt, S. Landau, M. Leese, and D. Stahl. Cluster Analysis. Wiley, 2011.

*) T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed., Springer 2009.

*) K.P. Murphy, Machine Learning: A Probabilistic Perspective, The MIT Press, 2012.

*) A.C. Rencher. Methods of Multivariate Analysis. Wiley, 3rd edition, 2012.

*) I.H. Witten, E. Frank, M.A. Hall, Data Mining: Practical Machine Learning Tools and Techniques, 4th ed., Elsevier 2016.

Specific recommendations and additional literature to be announced during the course.
Bemerkungen Throughout the course, we will use Python to implement methods and concepts, and perform experiments. Participants are expected to have at least a basic knowledge of programming as taught in "58989 Computing for Business and Economics".
Weblink Weblink on ADAM


Teilnahmebedingungen *) completed BA in Business and Economics
*) 12036 Econometrics
*) 58989 Computing for Business and Economics or equivalent
Anmeldung zur Lehrveranstaltung Registration: Please enroll in the Online Services (services.unibas.ch);

Eucor-Students and mobility students of other Swiss Universities or the FHNW first have to register at the University of Basel BEFORE the start of the course and receive their login data by post (e-mail address of the University of Basel). Processing time up to a week! Detailed information can be found here: https://www.unibas.ch/de/Studium/Mobilitaet.html
After successful registration you can enroll for the course in the Online Services (services.unibas.ch).

Applies to everyone: Enrolment = Registration for the course and the exam!
Unterrichtssprache Englisch
Einsatz digitaler Medien kein spezifischer Einsatz


Intervall Wochentag Zeit Raum
wöchentlich Donnerstag 14.15-18.00 Wirtschaftswissenschaftliche Fakultät, Grosses PC-Labor S18 HG.37


Datum Zeit Raum
Donnerstag 29.02.2024 14.15-18.00 Uhr Wirtschaftswissenschaftliche Fakultät, Grosses PC-Labor S18 HG.37
Donnerstag 07.03.2024 14.15-18.00 Uhr Wirtschaftswissenschaftliche Fakultät, Grosses PC-Labor S18 HG.37
Donnerstag 14.03.2024 14.15-18.00 Uhr Wirtschaftswissenschaftliche Fakultät, Grosses PC-Labor S18 HG.37
Donnerstag 21.03.2024 14.15-18.00 Uhr Wirtschaftswissenschaftliche Fakultät, Grosses PC-Labor S18 HG.37
Donnerstag 28.03.2024 14.15-18.00 Uhr Ostern
Donnerstag 04.04.2024 14.15-18.00 Uhr Wirtschaftswissenschaftliche Fakultät, Grosses PC-Labor S18 HG.37
Donnerstag 11.04.2024 14.15-18.00 Uhr Wirtschaftswissenschaftliche Fakultät, Grosses PC-Labor S18 HG.37
Module Modul: Field Electives in Economics and Public Policy (Masterstudium: Economics and Public Policy)
Modul: Kernbereich Wirtschaftswissenschaften (Masterstudium: Sustainable Development)
Modul: Specific Electives in Data Science and Computational Economics (Masterstudium: Wirtschaftswissenschaften)
Modul: Specific Electives in Marketing and Strategic Management (Masterstudium: Wirtschaftswissenschaften)
Modul: Technology Field (Masterstudium: Business and Technology)
Modul: Vorbereitung Masterarbeit Wirtschaftswissenschaften (Masterstudium: Sustainable Development)
Leistungsüberprüfung Leistungsnachweis
Hinweise zur Leistungsüberprüfung Combination of active participation, assignment(s) and final exam.
written exam: 30.04.24; 12:30-13:30.
Late deregistration is not possible for this course. If you do not wish to take part in the exam, please cancel your registration within the registration deadline.
An-/Abmeldung zur Leistungsüberprüfung Anm.: Belegen Lehrveranstaltung; Abm.: stornieren
Wiederholungsprüfung keine Wiederholungsprüfung
Skala 1-6 0,1
Wiederholtes Belegen beliebig wiederholbar
Zuständige Fakultät Wirtschaftswissenschaftliche Fakultät / WWZ, studiendekanat-wwz@unibas.ch
Anbietende Organisationseinheit Wirtschaftswissenschaftliche Fakultät / WWZ