Zur Merkliste hinzufügen
Zurück

 

69469-01 - Vorlesung mit Übungen: Introduction to LTI-Systems and Control 3 KP

Semester Herbstsemester 2024
Angebotsmuster Jedes Herbstsemester
Dozierende Nicolas Gerig (nicolas.gerig@unibas.ch)
Georg Rauter (georg.rauter@unibas.ch, BeurteilerIn)
Cédric Schicklin (cedric.schicklin@unibas.ch)
Carina Schmidt (carina.schmidt@unibas.ch)
Inhalt The lecture will be held in inverted classroom format. The lectures for the following week, will be online in form of videos on Tuesday night before the next lecture the Tuesday after. The students are required to watch the lecture and prepare questions until the next lecture in case they need further explanations of the course content. After answering questions, the lecture assistants will perform exercises together with the participants of the course to train and solidify the knowledge from the last lecture. In total, the participants of this course will learn to calculate the time response of a system purely by hand in order to understand the underlying principles of the calculations. The exercises and lectures will be accompanied by exercises also in Matlab to show state of the art tools to the participants in order to appreciate existing solution methods over manual solution. But the basic understanding of linear time-invariant crontrol systems is in the focus so that students get a feeling how control systems work in principle and if results are plausible.

Lecture content:
Introduction to control systems: open- vs. closed
Control schemes
LTI-Systems
Solution of LTI-Systems
Laplace transform
State space models: 1st-, 2nd-, and higher order
Transfer function
Step response
Cascaded systems
Stability: Asymptotic- and BIBO-stability
Back transform
Linearization of LTI-Systems
BODE diagram
Polar plots
Root-Locus plots
Nyquist stability criterium
PID-control (and tuning)
Lernziele The students should become able to analyze simple physical systems and embed them in closed-loop controllers. They should be able to calculate the system's response based on input to the system in the time domain.
In detail, the students should become able to set up Ordinary Differential Equations (ODE) that describe the behaviour of the system that is to be analyzed. In case the ODE is not of linear form, the system will be linearized. Instead of solving the system in time domain, we will use Laplace Transform. Since the system will be embedded in a control circuit, also the control circuit will be set up in Laplace space to obtain the transfer function of the entire system. When input is applied to the system, the system's response in time domain can be calculated. This response in time domain will be obtained using Partial Fraction Decomposition to obtain primitives of transfer functions that can be transformed back to time domain using Laplace Tables.
Also system stability will be analyzed, and cascaded control circuits should be set up to form a solid basis for the next course in the summer semester Applied Control.
Literatur Katsuhiko Ogata, Modern Control Engineering, Prentice Hall, 2010https://www.academia.edu/43692259/Modern_Control_Engineering_Fifth_Edition orhttp://docs.znu.ac.ir/members/pirmohamadi_ali/Control/Katsuhiko%20Ogata%20_%20Modern%20Control%20Engineering%205th%20Edition.pdf
Chen C. T.: Analog and Digital Control System Design: Transfer-Function, State-Space, and Algebraic Methods, Saunders College Publishing, 1993
Chen C. T.: Linear System Theory and Design, Saunders College Publishing, 1984
Föllinger O.: Regelungstechnik, 6. Auflage, Oldenbourg Verlag, 1990
Horn M.: Dourdoumas N.: Regelungstechnik, Pearson Verlag, 2004
Kailath T.: Linear Systems, Prentics Hall, 1980
Trentelman, H., Stoorvogel, A. A., Hautus, M.: Control Theory for Linear Systems, Springer, 2001
https://www.tugraz.at/institute/irt/teaching/additional-material
https://matlabacademy.mathworks.com/details/matlab-onramp/gettingstarted

Bemerkungen Basics that are relevant for the master studies in Biomedical Engineering:
https://dbe.unibas.ch/en/education/master-of-science/master-program-starting-in-hs-2023/
Weblink DBE_MA BME

 

Unterrichtssprache Englisch
Einsatz digitaler Medien kein spezifischer Einsatz

 

Intervall Wochentag Zeit Raum
wöchentlich Dienstag 10.15-12.00 Hegenheimermattweg 167B, Lecture Hall 02. 097

Einzeltermine

Datum Zeit Raum
Dienstag 17.09.2024 10.15-12.00 Uhr Hegenheimermattweg 167B, Lecture Hall 02. 097
Dienstag 24.09.2024 10.15-12.00 Uhr Hegenheimermattweg 167B, Lecture Hall 02. 097
Dienstag 01.10.2024 10.15-12.00 Uhr Hegenheimermattweg 167B, Lecture Hall 02. 097
Dienstag 08.10.2024 10.15-12.00 Uhr Hegenheimermattweg 167B, Lecture Hall 02. 097
Dienstag 15.10.2024 10.15-12.00 Uhr Hegenheimermattweg 167B, Lecture Hall 02. 097
Dienstag 22.10.2024 10.15-12.00 Uhr Hegenheimermattweg 167B, Lecture Hall 02. 097
Dienstag 29.10.2024 10.15-12.00 Uhr Hegenheimermattweg 167B, Lecture Hall 02. 097
Dienstag 05.11.2024 10.15-12.00 Uhr Hegenheimermattweg 167B, Lecture Hall 02. 097
Dienstag 12.11.2024 10.15-12.00 Uhr Hegenheimermattweg 167B, Lecture Hall 02. 097
Dienstag 19.11.2024 10.15-12.00 Uhr Hegenheimermattweg 167B, Lecture Hall 02. 097
Dienstag 26.11.2024 10.15-12.00 Uhr Hegenheimermattweg 167B, Lecture Hall 02. 097
Dienstag 03.12.2024 10.15-12.00 Uhr Hegenheimermattweg 167B, Lecture Hall 02. 097
Dienstag 10.12.2024 10.15-12.00 Uhr Hegenheimermattweg 167B, Lecture Hall 02. 097
Dienstag 17.12.2024 10.15-12.00 Uhr Hegenheimermattweg 167B, Lecture Hall 02. 097
Module Modul: Applications of Distributed Systems (Masterstudium: Computer Science)
Modul: Applications of Machine Intelligence (Masterstudium: Computer Science)
Modul: Biomedical Engineering Basics (Masterstudium: Biomedical Engineering)
Modul: Electives in Data Science (Masterstudium: Data Science)
Modul: Vertiefung Medizinische Nanowissenschaften (Masterstudium: Nanowissenschaften)
Leistungsüberprüfung Examen
Hinweise zur Leistungsüberprüfung The exam will be held in written form (2.5h). The students will not need any digital tool for problem solving. Accordingly, the allowed tools to bring to the exam is a sheet of hand-written formulas. Otherwise only tools for writing on paper are needed. For convenience, previous exams are provided in the lecture materials for the students to get an idea of the format, content, and complexity of exams.
An-/Abmeldung zur Leistungsüberprüfung Anm.: Belegen Lehrveranstaltung; Abm.: stornieren
Wiederholungsprüfung eine Wiederholung, bester Versuch zählt
Skala 1-6 0,1
Wiederholtes Belegen nicht wiederholbar
Zuständige Fakultät Medizinische Fakultät
Anbietende Organisationseinheit Departement Biomedical Engineering (DBE)

Zurück