Zurück zur Auswahl
Semester | Herbstsemester 2020 |
Angebotsmuster | Jedes Herbstsemester |
Dozierende | Michael Merz (michael.merz@unibas.ch, BeurteilerIn) |
Inhalt | 1. Einführung 2. Schadenanzahlverteilungen 3. Schadenhöhenverteilungen 4. Zeitdiskrete Markov-Ketten und Bonus-Malus-Systeme 5. Kollektives Modell der Risikotheorie 6. Individuelles Modell der Risikotheorie 7. Risikoteilung 8. Schadenanzahl- und Gesamtschadenprozesse 9. Ruin-Theorie 10. SST-Standardmodell für Schadenversicherer |
Lernziele | - Eigenschaften der wichtigsten Schadenanzahl- und Schadenhöhenverteilungen - Eigenschaften des kollektiven und individuellen Modells - Grundlagen zeitdiskreter Markov-Ketten und ihre Anwendung in Bonus-Malus-Systemen - Analytische, numerische und approximative Berechnung der zusammengesetzten Gesamtschadenverteilung - Eigenschaften der wichtigsten Schadenanzahl- und Gesamtschadenprozesse - Wichtigste Formen der Risikoteilung und deren Eigenschaften - Einführung in die Grundlagen der klassischen Ruin-Theorie - Vermittlung der wichtigsten Grundlagen des SST-Standardmodells für Schadenversicherer |
Literatur | Bühlmann, H (1970). Mathematical Methods in Risk Theory. Denuit, M. (2005). Actuarial Theory for Dependent Risks: Measures, Orders and Models. De Vylder, F. (1996). Advanced Risk Theory. Dickson, D. C. M. (2005). Insurance Risk and Ruin. Dienst, H.-R. (1988). Mathematische Verfahren der Rückversicherung. Gatto, R. (2014). Stochastische Modelle der aktuariellen Risikotheorie. Gerber, H. U. (1979). An Introduction to Mathematical Risk Theory. Goovaerts, M. J. (1984). Insurance Premiums: Theory and Applications. Gorge, G. (2013). Insurance Risk Management and Reinsurance. Grandell, J. (1997). Mixed Poisson Processes. Gray, R. J., Pitts, S. M. (2012). Risk Modelling in General Insurance. Heilmann, W.-R., Schröter, K. J. (2014). Grundbegriffe der Risikotheorie. Kaas, R. (2008). Modern Actuarial Risk Theory: Using R. Klugman, S. A., et al. (2008). Loss Models: From Data to Decisions. McNeil, A. J. (2005). Quantitative Risk Management: Concepts, Techniques and Tools. Meintrup, D., Schäffler, S. (2005). Stochastik: Theorie und Anwendungen. Mikosch, T. (2009). Non-Life Insurance Mathematics: An Introduction with the Poisson Process. Liebwein, P. (2009). Klassische und moderne Formen der R¨uckversicherung. Rolski T., et al. (2001). Stochastic Processes for Insurance and Finance. Schröter, K. J. (1995). Verfahren zur Approximation der Gesamtschadenverteilung: Systematisierung, Techniken und Vergleiche. Sundt, B. (1999). An Introduction to Non-Life Insurance Mathematics. Tse, Y.-K. (2009). Nonlife Actuarial Models: Theory, Methods and Evaluation. Wüthrich, M. V. (2013). Non-Life Insurance: Mathematics & Statistics. Lecture Notes, ETH Z¨urich, http://ssrn.com/abstract=2319328. Weitere Literaturangaben werden in der Vorlesung abgegeben. |
Bemerkungen | Die Vorlesung wird digital und asynchron durchgeführt. D.h. im Verlaufe des Semesters werden auf ADAM Videos hochgeladen, in denen die Folien des Skripts behandelt werden, das ebenfalls auf ADAM bereitgestellt wird. Neben den Vorlesungsunterlagen werden Übungsaufgaben mit ausführlichem Lösungsweg auf ADAM hochgeladen. Es wird dringend empfohlen, diese Übungsaufgaben selbständig zu bearbeiten und die bereitgestellten Lösungen nur bei Bedarf zur Bearbeitung heranzuziehen. Bei Bedarf können zusätzlich in 1-2 ZOOM-Meetings die Lösungen zu diesen Übungsaufgaben besprochen werden. Hörer*innen müssen die Berechtigung für den Zugriff auf die Vorlesungsunterlagen bei der Studiengangleitung Actuarial Science (j.bucher@unibas.ch) beantragen. |
Weblink | https://adam.unibas.ch |
Teilnahmevoraussetzungen | Kenntnisse in Analysis, Linearer Algebra, Wahrscheinlichkeitstheorie und Statistik |
Unterrichtssprache | Deutsch |
Einsatz digitaler Medien | Online-Veranstaltung |
HörerInnen willkommen |
Intervall | Wochentag | Zeit | Raum |
---|
Keine Einzeltermine verfügbar, bitte informieren Sie sich direkt bei den Dozierenden.
Module |
Modul: Angewandte Mathematik (Bachelorstudium: Mathematik) Modul: Angewandte Mathematik (Computational Chemistry) (Bachelorstudium: Computational Sciences (Studienbeginn vor 01.08.2018)) Modul: Angewandte Mathematik (Computational Mathematics) (Bachelorstudium: Computational Sciences (Studienbeginn vor 01.08.2018)) Modul: Angewandte Mathematik (Computational Physics) (Bachelorstudium: Computational Sciences (Studienbeginn vor 01.08.2018)) Modul: Schadenversicherung (Masterstudium: Actuarial Science) (Pflicht) |
Prüfung | Lehrveranst.-begleitend |
Hinweise zur Prüfung | Der Stoff dieser Vorlesung wird am Ende der Vorlesung durch eine mündliche oder schriftliche Prüfung geprüft. Wenn möglich findet die Prüfung als Präsenzveranstaltung statt, ansonsten digital. Die Prüfungsform wird im Verlauf des Semesters präzisiert. |
An-/Abmeldung zur Prüfung | Anm.: Belegen Lehrveranstaltung; Abm.: stornieren |
Wiederholungsprüfung | keine Wiederholungsprüfung |
Skala | 1-6 0,5 |
Belegen bei Nichtbestehen | beliebig wiederholbar |
Zuständige Fakultät | Universität Basel |
Anbietende Organisationseinheit | Fachbereich Mathematik |