Zur Merkliste hinzufügen
Zurück zur Auswahl

 

58950-01 - Vorlesung: Differential equations and Sobolev spaces (8 KP)

Semester Herbstsemester 2020
Weitere Semesterveranstaltungen zu diesen KP 58950-01 (Vorlesung)
58950-02 (Übung)
Angebotsmuster unregelmässig
Dozierende Gianluca Crippa (gianluca.crippa@unibas.ch, BeurteilerIn)
Inhalt Brief introduction to partial differential equations. The ordinary differential equation and the transport equation. Theory of characteristics. Energy methods. Sobolev spaces. Elliptic regularity theory. DiPerna-Lions theory for the transport equation. Quantitative estimates for the ordinary differential equation. Applications to mixing of fluids.
Literatur Lawrence C. Evans, "Partial Differential Equations", AMS.
Haim Brezis, "Functional Analysis, Sobolev Spaces and Partial Differential Equations", Springer.
Further literature will be communicated during the course.
Bemerkungen The Zoom-links of the lectures and the exercises will be made available via the ADAM-webpage of the course. Both lectures and exercises will be held "live" at the given times in order to allow for interaction. In addition, both lectures and exercises will be recorded and made available in the Zoom-cloud (the link will be posted on the ADAM-webpage as well). There will also be the possibility of some optional office hours or discussion meetings to be held in physical presence.

 

Teilnahmevoraussetzungen Analysis I & II. Lineare Algebra I & II. Reelle Analysis. Some background on PDEs and functional analysis will be useful (from instance, from previous analysis or numerics courses, or from mathematical methods).
Unterrichtssprache Englisch
Einsatz digitaler Medien kein spezifischer Einsatz
HörerInnen willkommen

 

Intervall Wochentag Zeit Raum

Keine Einzeltermine verfügbar, bitte informieren Sie sich direkt bei den Dozierenden.

Module Vertiefungsmodul: Analysis (Masterstudium: Mathematik)
Prüfung Lehrveranst.-begleitend
Hinweise zur Prüfung Lecture: Oral Exam after the two semesters (mündliche Masterprüfung Vertiefungsmodul Analysis).

Exercises: Credit Points will be assigned under the following conditions:
(1) Active participation to the lecture and to the exercise session.
(2) 66% of the points from the weekly exercise series (points are given for meaningful attempts of solution — “sinvolle Bearbeitung").
(3) Written or oral discussion on the exercises at the end of the semester (exact rules will be defined depending on the Corona-situation).
An-/Abmeldung zur Prüfung Anm.: Belegen Lehrveranstaltung; Abm.: stornieren
Wiederholungsprüfung keine Wiederholungsprüfung
Skala Pass / Fail
Belegen bei Nichtbestehen beliebig wiederholbar
Zuständige Fakultät Philosophisch-Naturwissenschaftliche Fakultät, studiendekanat-philnat@unibas.ch
Anbietende Organisationseinheit Fachbereich Mathematik

Zurück zur Auswahl