Zurück zur Auswahl
| Semester | Herbstsemester 2022 | 
| Angebotsmuster | unregelmässig | 
| Dozierende | Aurelien Lucchi (aurelien.lucchi@unibas.ch, BeurteilerIn) | 
| Inhalt | The class focuses on the theoretical concepts behind Deep learning. We will discuss the following concepts: General introduction to linear networks, activations, etc Approximation Theory Complexity Theory Network Architectures Optimization Optimization Landscape of Neural Networks Neural Tangent Kernel Regularization Generalization bounds Adversarial examples | 
| Lernziele | The main goal is to understand the theoretical foundations of Deep Learning. This includes the following important concepts: - Universal approximation: can a neural network approximate any arbitrary function? - Optimization: how do we optimize the parameters of a neural network? what theoretical guarantees do we have about finding a good solution? - Generalization: under what conditions does the solution of a neural network generalizes to unseen data? - Adversarial robustness: how robust is a neural network to adversarial attacks? | 
| Bemerkungen | Exercise sessions will start the second week of the semester. | 
| Teilnahmevoraussetzungen | - Machine Learning (classification, regression, kernels, etc) - Linear algebra - Calculus, Basic concepts in topology - Probability theory (random variable, expectation, density, etc) - Some non-mandatory exercises will require coding in python (reasonable coding skills in another programming language should be sufficient to learn python) Note that a significant part of the class focuses on understanding theoretical aspects, we will thus be covering proofs that require a good knowledge of the mathematical concepts discussed above. | 
| Unterrichtssprache | Englisch | 
| Einsatz digitaler Medien | kein spezifischer Einsatz | 
| Intervall | Wochentag | Zeit | Raum | 
|---|---|---|---|
| wöchentlich | Montag | 10.15-12.00 | Bernoullistrasse 30/32, Hörsaal 103 | 
| wöchentlich | Donnerstag | 16.15-18.00 | Spiegelgasse 5, Seminarraum 05.001 | 
| Datum | Zeit | Raum | 
|---|---|---|
| Montag 19.09.2022 | 10.15-12.00 Uhr | Bernoullistrasse 30/32, Hörsaal 103 | 
| Donnerstag 22.09.2022 | 16.15-18.00 Uhr | Spiegelgasse 5, Seminarraum 05.001 | 
| Montag 26.09.2022 | 10.15-12.00 Uhr | Bernoullistrasse 30/32, Hörsaal 103 | 
| Donnerstag 29.09.2022 | 16.15-18.00 Uhr | Spiegelgasse 5, Seminarraum 05.001 | 
| Montag 03.10.2022 | 10.15-12.00 Uhr | Bernoullistrasse 30/32, Hörsaal 103 | 
| Donnerstag 06.10.2022 | 16.15-18.00 Uhr | Spiegelgasse 5, Seminarraum 05.001 | 
| Montag 10.10.2022 | 10.15-12.00 Uhr | Bernoullistrasse 30/32, Hörsaal 103 | 
| Donnerstag 13.10.2022 | 16.15-18.00 Uhr | Spiegelgasse 5, Seminarraum 05.001 | 
| Montag 17.10.2022 | 10.15-12.00 Uhr | Bernoullistrasse 30/32, Hörsaal 103 | 
| Donnerstag 20.10.2022 | 16.15-18.00 Uhr | Spiegelgasse 5, Seminarraum 05.001 | 
| Montag 24.10.2022 | 10.15-12.00 Uhr | Bernoullistrasse 30/32, Hörsaal 103 | 
| Donnerstag 27.10.2022 | 16.15-18.00 Uhr | Spiegelgasse 5, Seminarraum 05.001 | 
| Montag 31.10.2022 | 10.15-12.00 Uhr | Bernoullistrasse 30/32, Hörsaal 103 | 
| Donnerstag 03.11.2022 | 16.15-18.00 Uhr | Spiegelgasse 5, Seminarraum 05.001 | 
| Montag 07.11.2022 | 10.15-12.00 Uhr | Bernoullistrasse 30/32, Hörsaal 103 | 
| Donnerstag 10.11.2022 | 16.15-18.00 Uhr | Spiegelgasse 5, Seminarraum 05.001 | 
| Montag 14.11.2022 | 10.15-12.00 Uhr | Bernoullistrasse 30/32, Hörsaal 103 | 
| Donnerstag 17.11.2022 | 16.15-18.00 Uhr | Spiegelgasse 5, Seminarraum 05.001 | 
| Montag 21.11.2022 | 10.15-12.00 Uhr | Bernoullistrasse 30/32, Hörsaal 103 | 
| Donnerstag 24.11.2022 | 16.15-18.00 Uhr | Spiegelgasse 5, Seminarraum 05.001 | 
| Montag 28.11.2022 | 10.15-12.00 Uhr | Bernoullistrasse 30/32, Hörsaal 103 | 
| Donnerstag 01.12.2022 | 16.15-18.00 Uhr | Spiegelgasse 5, Seminarraum 05.001 | 
| Montag 05.12.2022 | 10.15-12.00 Uhr | Bernoullistrasse 30/32, Hörsaal 103 | 
| Donnerstag 08.12.2022 | 16.15-18.00 Uhr | Spiegelgasse 5, Seminarraum 05.001 | 
| Montag 12.12.2022 | 10.15-12.00 Uhr | Bernoullistrasse 30/32, Hörsaal 103 | 
| Donnerstag 15.12.2022 | 16.15-18.00 Uhr | Spiegelgasse 5, Seminarraum 05.001 | 
| Montag 19.12.2022 | 10.15-12.00 Uhr | Bernoullistrasse 30/32, Hörsaal 103 | 
| Donnerstag 22.12.2022 | 16.15-18.00 Uhr | Spiegelgasse 5, Seminarraum 05.001 | 
| Module | Doktorat Informatik: Empfehlungen (Promotionsfach: Informatik) Modul: Applications of Distributed Systems (Masterstudium: Computer Science) Modul: Applications of Machine Intelligence (Masterstudium: Computer Science) Modul: Concepts of Machine Intelligence (Masterstudium: Computer Science) Modul: Electives in Data Science (Masterstudium: Data Science) Modul: Machine Learning Foundations (Masterstudium: Data Science) Modul: Methods of Machine Intelligence (Masterstudium: Computer Science) | 
| Prüfung | Lehrveranst.-begleitend | 
| Hinweise zur Prüfung | Continuous assessment Note the following split: 30% homework 30% project (writeup and presentation) 40% written exam A 50% score on HW sets is required to participate in the final exam. Expected date: Tuesday, 31 January 2023, 10-12 a.m., room 00.003, Spiegelgasse 1. | 
| An-/Abmeldung zur Prüfung | Anm.: Belegen Lehrveranstaltung; Abm.: stornieren | 
| Wiederholungsprüfung | keine Wiederholungsprüfung | 
| Skala | 1-6 0,5 | 
| Belegen bei Nichtbestehen | beliebig wiederholbar | 
| Zuständige Fakultät | Philosophisch-Naturwissenschaftliche Fakultät, studiendekanat-philnat@unibas.ch | 
| Anbietende Organisationseinheit | Fachbereich Informatik |