Zur Merkliste hinzufügen
Zurück zur Auswahl

 

30661-01 - Vorlesung: Advanced Time Series Analysis (3 KP)

Semester Frühjahrsemester 2023
Angebotsmuster Jedes Frühjahrsem.
Dozierende Simon Beyeler (simon.beyeler@unibas.ch)
Sylvia Kaufmann (sylvia.kaufmann@unibas.ch, BeurteilerIn)
Inhalt The course introduces modern multivariate time series modelling, in particular vector autoregression with hierarchical extensions and applications in macroeconomics.

In a first part, we discuss a vector autoregression from an analytical viewpoint. We derive properties of the time series process, discuss stationarity and invertibility conditions, derive conditional and unconditional moments. As single parameters are not of prime interest, tools like impulse responses and variance decomposition are used to interpret multivariate time series models. Besides improving structural in-sample analysis, multivariate models eventually improve forecasting performance.

We briefly review model estimation from a frequentist perspective, as a basis to introduce the Bayesian approach. A Bayesian approach circumvents estimation difficulties when either data is scarce or high-dimensional. We introduce two basic samplers based on Markov chain Monte Carlo (MCMC) simulation methods to obtain posterior inference: Gibbs and Metropolis-Hastings sampling. To quantify uncertainty, we derive procedures to obtain confidence or credible intervals. Finally, we discuss approaches to perform model choice or (forecast) evaluation, like MCMC-based estimation of the marginal likelihood or K-fold cross-validation.

The last part introduces latent variables into multivariate modelling. These capture latent processes determining observed data like regime-switching parameters or underlying common factors.

The lecture includes exercise sessions with applications in macroeconomics.
Lernziele - Analyse and derive the properties of multivariate time series models.
- Perform model specification/comparison; understand and apply tools to interpret model estimates.
- Understand the differences between frequentist estimation and Bayesian inference.
- Implement estimation and various structural identification procedures, quantify uncertainty.
- Estimate basic latent variable models.
- Basic knowledge of forecasting procedures, forecast evaluation.
Literatur Gelman A., Carlin J.B., Stern H.S. and Rubin, D.R. (1995), Bayesian Data Analysis, Chapman and Hall, London.
Greenberg Edward, 2013, Introduction to Bayesian Econometrics, Cambridge University Press, Cambridge UK.
Lütkepohl Helmut, 2005, New Introduction to Multiple Time Series Analysis, Springer.
Neusser Klaus, 2016, Time Series Econometrics, Springer International Publishing AG Switzerland.

Popular scientific:
Bertsch Mcgrayne Sharon (2011), The theory that would not die: how bayes' rule cracked the enigma code, hunted down russian submarines, and emerged from two centuries of controversy, Yale University Press, New Haven & London..
Bemerkungen The course will be taught onsite.
Weblink Weblink

 

Teilnahmevoraussetzungen Completed BA (preferably in economics).
Econometrics MA level: Knowledge in regression analysis, univariate time series analysis (advantageous).

Knowledge in econometrics or programming software (like e.g. EViews, matlab, R)
Anmeldung zur Lehrveranstaltung Registration: Please enrol in MOnA. EUCOR-Students and students of other Swiss Universities have to enrol at the students administration office (studseksupport1@unibas.ch) within the official enrolment period. Enrolment = Registration for the exam!
Unterrichtssprache Englisch
Einsatz digitaler Medien kein spezifischer Einsatz

 

Intervall Wochentag Zeit Raum
14-täglich Mittwoch 14.15-17.45 Wirtschaftswissenschaftliche Fakultät, Seminarraum S15 HG.31

Einzeltermine

Datum Zeit Raum
Mittwoch 22.02.2023 14.15-17.45 Uhr Wirtschaftswissenschaftliche Fakultät, Seminarraum S15 HG.31
Mittwoch 08.03.2023 14.15-17.45 Uhr Wirtschaftswissenschaftliche Fakultät, Seminarraum S15 HG.31
Mittwoch 22.03.2023 14.15-17.45 Uhr Wirtschaftswissenschaftliche Fakultät, Seminarraum S15 HG.31
Mittwoch 05.04.2023 14.15-17.45 Uhr Wirtschaftswissenschaftliche Fakultät, Seminarraum S15 HG.31
Mittwoch 19.04.2023 14.15-17.45 Uhr Wirtschaftswissenschaftliche Fakultät, Seminarraum S15 HG.31
Mittwoch 03.05.2023 14.15-17.45 Uhr Wirtschaftswissenschaftliche Fakultät, Seminarraum S15 HG.31
Mittwoch 17.05.2023 14.15-17.45 Uhr Wirtschaftswissenschaftliche Fakultät, Seminarraum S15 HG.31
Mittwoch 31.05.2023 14.15-17.45 Uhr Wirtschaftswissenschaftliche Fakultät, Seminarraum S15 HG.31
Module Modul: Fachlich-methodische Weiterbildung (Doktoratsstudium - Wirtschaftswissenschaftliche Fakultät)
Modul: Field Electives in Economics and Public Policy (Masterstudium: Economics and Public Policy)
Modul: Field Electives in Finance and Money (Masterstudium: Finance and Money)
Modul: Finance Field: Monetary Economics and Macrofinance (Masterstudium: Finance and Money)
Modul: Specific Electives in Data Science and Computational Economics (Masterstudium: Wirtschaftswissenschaften)
Modul: Specific Electives in Economics (Masterstudium: Wirtschaftswissenschaften)
Modul: Statistik und Computational Science (Masterstudium: Actuarial Science)
Spezialisierungsmodul: Areas of Specialization in International and/or Monetary Economics (Masterstudium: International and Monetary Economics)
Vertiefungsmodul: Quantitative Methods (Masterstudium: Wirtschaftswissenschaften (Studienbeginn vor 01.08.2021))
Prüfung Leistungsnachweis
Hinweise zur Prüfung 40% Two assignments (team work of 3-5 persons)
60% Written exam (open book): 06.06.23; 10:15-11:15. WWZ Audi: A-Z.

You can still withdraw from the examination by submitting a completed, signed form to our office from 21.03.23 until 31.03.23 / 12:00 o’clock. The deregistration form and the mail address can be found on the homepage of the Dean of Studies Office: https://wwz.unibas.ch/en/studies/examinations/de-/registration-of-examinations/
Prior to 20.03.23, please deregister only in the Online Services.
The examination rooms will be published by 26.5.23.
An-/Abmeldung zur Prüfung Anm.: Belegen Lehrveranstaltung; Abm.: stornieren
Wiederholungsprüfung keine Wiederholungsprüfung
Skala 1-6 0,1
Belegen bei Nichtbestehen beliebig wiederholbar
Zuständige Fakultät Wirtschaftswissenschaftliche Fakultät / WWZ, studiendekanat-wwz@unibas.ch
Anbietende Organisationseinheit Wirtschaftswissenschaftliche Fakultät / WWZ

Zurück zur Auswahl