Zur Merkliste hinzufügen
Zurück zur Auswahl

 

55662-01 - Vorlesung: Applied Mathematics and Informatics in Drug Discovery (2 KP)

Semester Herbstsemester 2023
Angebotsmuster Jedes Herbstsemester
Dozierende Jitao David Zhang (jitao-david.zhang@unibas.ch, BeurteilerIn)
Inhalt Applied mathematics and computer science are indispensable in modern drug discovery to enable decisions that have direct impacts on lives. This introductory course will offer a practitioner’s review of mathematical concepts, informatics tools, and industrial approaches in relevant fields, especially bioinformatics, molecular modelling, cheminformatics, mathematical modelling, experiment design and statistical inference, and machine learning. It is hoped that the students are exposed to the interdisciplinary and multiscale modelling nature of drug discovery, and are motivated to deepen their knowledge in relevant fields in future study and practice, to be able to solve open challenges in drug discovery.
Lernziele We explore the drug-discovery process and study applications of mathematics and informatics with case studies. We examine how mathematics concepts and informatics tools are used to model complex systems at multiple levels - molecular level, cellular and omics level, organ- and system-level, and population level - and how the multiscale modelling approach contributes to drug discovery.
Literatur Lecture notes and slides. Recommend reading (papers, book chapters, etc.) and media (e.g. YouTube videos) will be distributed.
Weblink Check out the website at www.amidd.ch

 

Teilnahmevoraussetzungen Students of natrual sciences, including biology, physics, chemistry, pharmacy, and medical students are as much welcome as students of mathematics and computer sciences.

Though no prerequisite courses are obligatory, elementary understanding of statistics, probability, calculus, and ordinary differential equations are helpful. High-school knowledge in physics, chemistry, and biology are required. Knowledge and proficiency in at least one programming language (preferably C/C++, Java, R, Python, or Julia) is very helpful to try real-world problems.
Unterrichtssprache Englisch
Einsatz digitaler Medien kein spezifischer Einsatz
HörerInnen willkommen

 

Intervall Wochentag Zeit Raum
wöchentlich Freitag 12.15-14.00 Spiegelgasse 5, Seminarraum 05.002

Einzeltermine

Datum Zeit Raum
Freitag 22.09.2023 12.15-14.00 Uhr Spiegelgasse 5, Seminarraum 05.002
Freitag 29.09.2023 12.15-14.00 Uhr Spiegelgasse 5, Seminarraum 05.002
Freitag 06.10.2023 12.15-14.00 Uhr Spiegelgasse 5, Seminarraum 05.002
Freitag 13.10.2023 12.15-14.00 Uhr Spiegelgasse 5, Seminarraum 05.002
Freitag 20.10.2023 12.15-14.00 Uhr Spiegelgasse 5, Seminarraum 05.002
Freitag 27.10.2023 12.15-14.00 Uhr Spiegelgasse 5, Seminarraum 05.002
Freitag 03.11.2023 12.15-14.00 Uhr Spiegelgasse 5, Seminarraum 05.002
Freitag 10.11.2023 12.15-14.00 Uhr Spiegelgasse 5, Seminarraum 05.002
Freitag 17.11.2023 12.15-14.00 Uhr Bernoullistrasse 30/32, kleiner Hörsaal 120
Freitag 24.11.2023 12.15-14.00 Uhr Dies Academicus
Freitag 01.12.2023 12.15-14.00 Uhr Spiegelgasse 5, Seminarraum 05.002
Freitag 08.12.2023 12.15-14.00 Uhr Spiegelgasse 5, Seminarraum 05.002
Freitag 15.12.2023 12.15-14.00 Uhr Spiegelgasse 5, Seminarraum 05.002
Freitag 22.12.2023 12.15-14.00 Uhr Spiegelgasse 5, Seminarraum 05.002
Module Modul: Angewandte Mathematik (Bachelorstudium: Mathematik)
Modul: Applications and Related Topics (Bachelorstudium: Computer Science)
Modul: Applications and Related Topics (Bachelor Studienfach: Computer Science)
Modul: Electives in Data Science (Masterstudium: Data Science)
Prüfung Lehrveranst.-begleitend
Hinweise zur Prüfung Scores will be given in scale 1-6 by 0.5. The final note is given by participation including quizzes (30%), offline activities (40%), and a collaboration challenge in the final session (30%).
An-/Abmeldung zur Prüfung Anm.: Belegen Lehrveranstaltung; Abm.: stornieren
Wiederholungsprüfung keine Wiederholungsprüfung
Skala 1-6 0,5
Belegen bei Nichtbestehen beliebig wiederholbar
Zuständige Fakultät Philosophisch-Naturwissenschaftliche Fakultät, studiendekanat-philnat@unibas.ch
Anbietende Organisationseinheit Fachbereich Mathematik

Zurück zur Auswahl