Zurück zur Auswahl

 

41129-01 - Vorlesung mit Übungen: Advanced Statistics: Analysing quality of care data (3 KP) (ABGESAGT)

Semester Frühjahrsemester 2024
Angebotsmuster Jedes Frühjahrsem.
Dozierende Catherine Blatter (catherine.blatter@unibas.ch)
Sarah Musy (sarah.musy@unibas.ch)
Michael Simon (m.simon@unibas.ch, BeurteilerIn)
Diana Trutschel (diana.trutschel@unibas.ch)
Inhalt • A lecture-seminar-workshop format will be used.
• The complete process from conceptualizing, analyzing, and presenting data of quality-of-care data will be used.
• Regression-based techniques for between provider comparisons (provider profiling)
• Statistical process control to describe quality of care over time within organizations.
Lernziele According to the WHO quality health care can be defined in many ways, but quality health services should be: effective, safe, and people-centered. To realize these benefits health services must be: timely, equitable, integrated, and efficient [1]. In order to achieve these goals multiple approaches exists, with data-driven quality improvement and public reporting as key means to describe and assess quality of care. The goal of this course is to introduce students to two areas of quantitative data analysis, which are commonly used in applied analyses of quality-of-care data: provider profiling and statistical process control.

With the successful completion of the course students will be able to:
1. Describe basic concepts of quality of care and their theoretical underpinnings
2. Develop an appropriate question in the context of quality of care and the available data.
3. Evaluate the scope and limitations of the available quality of care data.
4. Analyze quality of care data with your own or a provided data set
5. Present and discuss quality of care data with different audiences

[1] https://www.who.int/health-topics/quality-of-care#tab=tab_1
Literatur Please bring your own laptop with installed R and RStudio.
Literature is available on ADAM.
Bemerkungen Slides, data & code will be available on ADAM.
Sessions will be recorded and posted on Panopto.
Weblink Login ADAM

 

Teilnahmevoraussetzungen Successful completion of Statistics I (LV10537) & II (LV 10538). Please look again at course content and topcis of Statistics I and II in order to be able to follow the course!
Anmeldung zur Lehrveranstaltung in Services belegen
Unterrichtssprache Englisch
Einsatz digitaler Medien Online-Angebot obligatorisch

 

Intervall Wochentag Zeit Raum

Keine Einzeltermine verfügbar, bitte informieren Sie sich direkt bei den Dozierenden.

Module Modul Vertiefung Research (Masterstudium: Pflegewissenschaft)
Prüfung Lehrveranst.-begleitend
Hinweise zur Prüfung The exam consist of an abstract (20% of the course grade) and an oral exam (80% of the course grade).
An-/Abmeldung zur Prüfung Anmelden: Belegen; Abmelden: Institut
Wiederholungsprüfung keine Wiederholungsprüfung
Skala 1-6 0,1
Belegen bei Nichtbestehen einmal wiederholbar
Zuständige Fakultät Medizinische Fakultät
Anbietende Organisationseinheit Institut für Pflegewissenschaft

Zurück zur Auswahl