Zur Merkliste hinzufügen
Zurück zur Auswahl

 

10616-01 - Vorlesung: Applied Machine Learning (3 KP)

Semester Frühjahrsemester 2025
Angebotsmuster Jedes Frühjahrsem.
Dozierende Dietmar Maringer (dietmar.maringer@unibas.ch, BeurteilerIn)
Inhalt To address the "data-rich, information-poor" (DRIP) syndrome, this course introduces key concepts in data analysis and techniques for discovering structure in data to effectively extract meaningful information. Typical applications include classification, clustering, and dimensionality reduction. The methods covered span a range of approaches, including nonlinear methods, perceptrons, neural networks, support vector machines, as well as tree-, kernel-, rule-based, and generative methods.
In addition to theoretical presentations, numerous practical applications are carried out. Special attention is paid to data preprocessing, model validation, and model selection.
Lernziele Solid understanding of key machine learning techniques, their advantages and limitations, and application skills.
Literatur Lecture material will be provided. There is no designated textbook, but quite a few books participants might find helpful. These include (in alphabetical order):

*) E. Alpaydin, Introduction to Machine Learning, 4th ed., MIT Press 2020.

*) B.S. Everitt and T. Hothorn. An Introduction to Applied Multivariate Analysis with R. Springer, 2011.

*) B.S. Everitt, S. Landau, M. Leese, and D. Stahl. Cluster Analysis. Wiley, 2011.

*) T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed., Springer 2013.

*) K.P. Murphy, Machine Learning: A Probabilistic Perspective, The MIT Press, 2012.

*) A.C. Rencher. Methods of Multivariate Analysis. Wiley, 3rd edition, 2012.

*) I.H. Witten, E. Frank, M.A. Hall, Data Mining: Practical Machine Learning Tools and Techniques, 4th ed., Elsevier 2016.

*) Jake VanderPlas, Python Data Science Handbook, O'Reilly 2016.

*) Amin Zollanvari, Machine Learning with Python, Springer 2023.

Specific recommendations and additional literature to be announced during the course.
Bemerkungen Throughout the course, we will use Python to implement various methods and concepts, as well as to conduct experiments. Participants are expected to have a basic knowledge of Python programming, at least to the level taught in "58989 Computing for Business and Economics."
Weblink Weblink on ADAM

 

Teilnahmevoraussetzungen *) completed BA in Business and Economics
*) 12036 Econometrics
*) 58989 Computing for Business and Economics or equivalent
Anmeldung zur Lehrveranstaltung Registration: Please enroll in the Online Services (services.unibas.ch);

Eucor-Students and mobility students of other Swiss Universities or the FHNW first have to register at the University of Basel BEFORE the start of the course and receive their login data by post (e-mail address of the University of Basel). Processing time up to a week! Detailed information can be found here: https://www.unibas.ch/de/Studium/Mobilitaet.html
After successful registration you can enroll for the course in the Online Services (services.unibas.ch).

Applies to everyone: Enrolment = Registration for the course and the exam!
Unterrichtssprache Englisch
Einsatz digitaler Medien kein spezifischer Einsatz

 

Intervall Wochentag Zeit Raum
wöchentlich Donnerstag 14.15-18.00 Wirtschaftswissenschaftliche Fakultät, Grosses PC-Labor S18 HG.37

Einzeltermine

Datum Zeit Raum
Donnerstag 20.02.2025 14.15-18.00 Uhr Wirtschaftswissenschaftliche Fakultät, Grosses PC-Labor S18 HG.37
Donnerstag 27.02.2025 14.15-18.00 Uhr Wirtschaftswissenschaftliche Fakultät, Grosses PC-Labor S18 HG.37
Donnerstag 06.03.2025 14.15-18.00 Uhr Wirtschaftswissenschaftliche Fakultät, Grosses PC-Labor S18 HG.37
Donnerstag 13.03.2025 14.15-18.00 Uhr Fasnachstferien
Donnerstag 20.03.2025 14.15-18.00 Uhr Wirtschaftswissenschaftliche Fakultät, Grosses PC-Labor S18 HG.37
Donnerstag 27.03.2025 14.15-18.00 Uhr Wirtschaftswissenschaftliche Fakultät, Grosses PC-Labor S18 HG.37
Donnerstag 03.04.2025 14.15-18.00 Uhr Wirtschaftswissenschaftliche Fakultät, Grosses PC-Labor S18 HG.37
Module Modul: Field Electives in Economics and Public Policy (Masterstudium: Economics and Public Policy)
Modul: Kernbereich Wirtschaftswissenschaften (Masterstudium: Sustainable Development)
Modul: Specific Electives in Data Science and Computational Economics (Masterstudium: Wirtschaftswissenschaften)
Modul: Specific Electives in Marketing and Strategic Management (Masterstudium: Wirtschaftswissenschaften)
Modul: Technology Field (Masterstudium: Business and Technology)
Modul: Vorbereitung Masterarbeit Wirtschaftswissenschaften (Masterstudium: Sustainable Development)
Prüfung Leistungsnachweis
Hinweise zur Prüfung Combination of active participation, assignment(s) and final exam.
written exam: Date and room tbd

Late deregistration is not possible for this course. If you do not wish to take part in the exam, please cancel your registration within the registration deadline.
An-/Abmeldung zur Prüfung Anm.: Belegen Lehrveranstaltung; Abm.: stornieren
Wiederholungsprüfung keine Wiederholungsprüfung
Skala 1-6 0,1
Belegen bei Nichtbestehen beliebig wiederholbar
Zuständige Fakultät Wirtschaftswissenschaftliche Fakultät / WWZ, studiendekanat-wwz@unibas.ch
Anbietende Organisationseinheit Wirtschaftswissenschaftliche Fakultät / WWZ

Zurück zur Auswahl