Zur Merkliste hinzufügen
Zurück zur Auswahl

 

74710-01 - Seminar: Introduction to Social Data Science (3 KP)

Semester Frühjahrsemester 2025
Angebotsmuster unregelmässig
Dozierende Rosa Lavelle-Hill (rosa.lavelle-hill@unibas.ch, BeurteilerIn)
Inhalt This course will introduce the basics of social data science, following these lecture themes: (1) What is Social Data Science? (2) Big Data and Machine Learning: Advantages and Limitations. (3) What makes good Social Data Science research? (4) Dissemination and evaluation of a social data science research article. In the latter section, students will present in small groups a social data science study from their academic discipline of choice. No prior knowledge of data science or social science methods is assumed.

By the end of the course, students will have a grasp of what is social data science. The course introduces different digital data types (structured vs. unstructured; qualitative vs. quantitative) and data collection methods (i.e., surveys, experience sampling, digital traces, and online experiments). Students will learn about different approaches to data analysis (i.e., inductive vs. deductive, explanation vs. prediction, algorithmic modeling vs. data modeling) and evaluate their utility for answering different social data science research questions. Students will also get a conceptual introduction to machine learning as well as presentations of research examples using machine learning methods to answer social questions.

All students must contribute towards a group presentation and evaluation of a social data science scientific article from their chosen discipline. In addition, students are expected to participate in class discussions and provide constructive feedback on their peers' presentations.
Lernziele To think critically about when digital methods, big data, and machine learning should be used for social science and humanities research by assessing the advantages, disadvantages, and limitations.
To be able to present and critically evaluate a social data science research study of choice.
Literatur Bail, C. A., Argyle, L. P., Brown, T. W., Bumpus, J. P., Chen, H., Hunzaker, M. F., ... & Volfovsky, A. (2018). Exposure to opposing views on social media can increase political polarization. Proceedings of the National Academy of Sciences, 115(37), 9216-9221. https://www.pnas.org/doi/pdf/10.1073/pnas.1804840115
Breiman, L. (2001). Statistical modeling: The two cultures (with comments and a rejoinder by the author). Statistical science, 16(3), 199-231.
Lavelle-Hill, R., Frenzel, A. C., Goetz, T., Lichtenfeld, S., Marsh, H. W., Pekrun, R., ... & Murayama, K. (2024). How the predictors of math achievement change over time: A longitudinal machine learning approach. Journal of Educational Psychology. https://doi.org/10.1037/edu0000863
Lavelle-Hill, R., Harvey, J., Smith, G., Mazumder, A., Ellis, M., Mwantimwa, K., & Goulding, J. (2022). Using mobile money data and call detail records to explore the risks of urban migration in Tanzania. EPJ Data Science, 11(1), 28. https://link.springer.com/content/pdf/10.1140/epjds/s13688-022-00340-y.pdf
Mosleh, M., Martel, C., Eckles, D., & Rand, D. G. (2021). Shared partisanship dramatically increases social tie formation in a Twitter field experiment. Proceedings of the National Academy of Sciences, 118(7), e2022761118. https://www.pnas.org/doi/pdf/10.1073/pnas.2022761118
Open Science Collaboration. (2015). Estimating the reproducibility of psychological science. Science, 349(6251), aac4716.
Yarkoni, T., & Westfall, J. (2017). Choosing prediction over explanation in psychology: Lessons from machine learning. Perspectives on Psychological Science, 12(6), 1100-1122.
Bemerkungen Only three absences are permitted; medical attestation is required for further absences!

 

Teilnahmevoraussetzungen The number of participants is limited. In case of over-subscription, students of Digital Humanities will be given priority.
Unterrichtssprache Englisch
Einsatz digitaler Medien kein spezifischer Einsatz

 

Intervall Wochentag Zeit Raum
wöchentlich Dienstag 16.15-18.00 Kollegienhaus, Hörsaal 119

Einzeltermine

Datum Zeit Raum
Dienstag 25.02.2025 16.15-18.00 Uhr Kollegienhaus, Hörsaal 119
Dienstag 04.03.2025 16.15-18.00 Uhr Kollegienhaus, Hörsaal 119
Dienstag 11.03.2025 16.15-18.00 Uhr Fasnachstferien
Dienstag 18.03.2025 16.15-18.00 Uhr Kollegienhaus, Hörsaal 119
Dienstag 25.03.2025 16.15-18.00 Uhr Kollegienhaus, Hörsaal 119
Dienstag 01.04.2025 16.15-18.00 Uhr Kollegienhaus, Hörsaal 119
Dienstag 08.04.2025 16.15-18.00 Uhr Kollegienhaus, Hörsaal 119
Dienstag 15.04.2025 16.15-18.00 Uhr Kollegienhaus, Hörsaal 119
Dienstag 22.04.2025 16.15-18.00 Uhr Kollegienhaus, Hörsaal 119
Dienstag 29.04.2025 16.15-18.00 Uhr Kollegienhaus, Hörsaal 119
Dienstag 06.05.2025 16.15-18.00 Uhr Kollegienhaus, Hörsaal 119
Dienstag 13.05.2025 16.15-18.00 Uhr Kollegienhaus, Hörsaal 119
Dienstag 20.05.2025 16.15-18.00 Uhr Kollegienhaus, Hörsaal 119
Dienstag 27.05.2025 16.15-18.00 Uhr Kollegienhaus, Hörsaal 119
Module Modul: Erweiterung Gesellschaftswissenschaften M.A. (Master Studienfach: Politikwissenschaft)
Modul: Introduction to Digital Humanities (Master Studienfach: Digital Humanities)
Modul: Methoden der Gesellschaftswissenschaften (Masterstudium: European Global Studies)
Modul: Methoden der Near & Middle Eastern Studies und der Gesellschaftswissenschaften (Master Studienfach: Near & Middle Eastern Studies)
Modul: Research Skills (Master Studiengang: African Studies)
Modul: Transfer: Digital History (Master Studiengang: Europäische Geschichte in globaler Perspektive )
Prüfung Lehrveranst.-begleitend
An-/Abmeldung zur Prüfung Anmelden: Belegen; Abmelden: nicht erforderlich
Wiederholungsprüfung keine Wiederholungsprüfung
Skala Pass / Fail
Belegen bei Nichtbestehen beliebig wiederholbar
Zuständige Fakultät Philosophisch-Historische Fakultät, studadmin-philhist@unibas.ch
Anbietende Organisationseinheit Digital Humanities Lab

Zurück zur Auswahl