Zur Merkliste hinzufügen
Zurück zur Auswahl

 

75709-01 - Übung: Introduction to Machine Learning in Python (3 KP)

Semester Frühjahrsemester 2025
Angebotsmuster unregelmässig
Dozierende Rosa Lavelle-Hill (rosa.lavelle-hill@unibas.ch, BeurteilerIn)
Inhalt This course will introduce the basics of big data and machine learning and how it can be used in the context of social science and humanities research. No prior knowledge of machine learning is assumed. The course will cover different topics including how big data methods differ from inferential statistics, data cleaning and pre-processing, different machine learning models, eXplainable AI (XAI) methods, as well as bias and responsible AI.
Core machine learning principles such as cross-validation, out-of-sample prediction, and hyper-parameter tuning will be introduced. A key focus will be on interpretable machine learning models such as regression-based models, decision trees, and random forests, as well as different XAI methods such as permutation importance and SHAP.
In the exercise sessions, you will receive exercises about the topic of the day's lecture. You will be working on the exercises during the session and will receive tips and feedback. Throughout the course, students will code their own machine learning analysis in Python bit by bit. Therefore, some prior experience with Python is heavily recommended. A basic understanding of inferential statistics is also preferred. Participants can bring their own data or use the data that will be provided.
Lernziele To think critically about when Big Data and machine learning should be used for social science and humanities research by assessing the advantages, disadvantages, and limitations.
To be able to perform a machine learning analysis in Python to answer a specific research question in the social sciences or humanities.
Literatur Programming with Python for Social Scientists, Philip D. Brooker, Published by SAGE, 2020
Breiman, L. (2001). Statistical modeling: The two cultures (with comments and a rejoinder by the author). Statistical science, 16(3), 199-231.
Molnar, Christoph. “Interpretable machine learning. A Guide for Making Black Box Models Explainable”, 2019. https://christophm.github.io/interpretable-ml-book/
Bemerkungen This exercise relates to lecture 74922 and is recommended to be attended together with it.
This course has a learning-by-doing format. Students must bring their own laptops to the course.
Only three absences are permitted; medical attestation is required for further absences.

 

Unterrichtssprache Englisch
Einsatz digitaler Medien kein spezifischer Einsatz

 

Intervall Wochentag Zeit Raum
wöchentlich Dienstag 12.15-14.00 Bernoullistrasse 14/16, Seminarraum 02.004

Einzeltermine

Datum Zeit Raum
Dienstag 25.02.2025 12.15-14.00 Uhr Bernoullistrasse 14/16, Seminarraum 02.004
Dienstag 04.03.2025 12.15-14.00 Uhr Bernoullistrasse 14/16, Seminarraum 02.004
Dienstag 11.03.2025 12.15-14.00 Uhr Fasnachstferien
Dienstag 18.03.2025 12.15-14.00 Uhr Bernoullistrasse 14/16, Seminarraum 02.004
Dienstag 25.03.2025 12.15-14.00 Uhr Bernoullistrasse 14/16, Seminarraum 02.004
Dienstag 01.04.2025 12.15-14.00 Uhr Bernoullistrasse 14/16, Seminarraum 02.004
Dienstag 08.04.2025 12.15-14.00 Uhr Bernoullistrasse 14/16, Seminarraum 02.004
Dienstag 15.04.2025 12.15-14.00 Uhr Bernoullistrasse 14/16, Seminarraum 02.004
Dienstag 22.04.2025 12.15-14.00 Uhr Bernoullistrasse 14/16, Seminarraum 02.004
Dienstag 29.04.2025 12.15-14.00 Uhr Bernoullistrasse 14/16, Seminarraum 02.004
Dienstag 06.05.2025 12.15-14.00 Uhr Bernoullistrasse 14/16, Seminarraum 02.004
Dienstag 13.05.2025 12.15-14.00 Uhr Bernoullistrasse 14/16, Seminarraum 02.004
Dienstag 20.05.2025 12.15-14.00 Uhr Bernoullistrasse 14/16, Seminarraum 02.004
Dienstag 27.05.2025 12.15-14.00 Uhr Bernoullistrasse 14/16, Seminarraum 02.004
Module Modul: Humanities and Social Science Coding (Master Studienfach: Digital Humanities)
Prüfung Lehrveranst.-begleitend
An-/Abmeldung zur Prüfung Anmelden: Belegen; Abmelden: nicht erforderlich
Wiederholungsprüfung keine Wiederholungsprüfung
Skala Pass / Fail
Belegen bei Nichtbestehen beliebig wiederholbar
Zuständige Fakultät Philosophisch-Historische Fakultät, studadmin-philhist@unibas.ch
Anbietende Organisationseinheit Digital Humanities Lab

Zurück zur Auswahl