Zur Merkliste hinzufügen
Zurück zur Auswahl

 

45400-01 - Vorlesung: Planning and Optimization (8 KP)

Semester Herbstsemester 2025
Weitere Semesterveranstaltungen zu diesen KP 45400-01 (Vorlesung)
45400-02 (Übung)
Angebotsmuster Jedes Herbstsemester
Dozierende Malte Helmert (malte.helmert@unibas.ch, BeurteilerIn)
Gabriele Röger (gabriele.roeger@unibas.ch)
Inhalt The course provides an introduction to the theory and algorithms for automated planning, with an emphasis on classical planning. Automated planning is concerned with determining a sequence of actions that transforms a given initial state into a desirable state in a very large state space. Topics covered include: planning formalisms and normal forms; progression and regression; computational complexity of planning; heuristics for classical planning based on delete relaxation, abstraction, landmarks, critical paths and network flows; formal relationships between heuristics.
Lernziele The participants get to know the theoretical and algorithmic foundations of action planning as well as their practical implementation. They understand the fundamental concepts underlying modern planning algorithms as well as the theoretical relationships that connect them. They are equipped to understand research papers and conduct projects in this area.
Literatur There is no textbook for the course. The course slides will be made available to the participants, and additional research papers complementing the course materials will be uploaded to the course webpage during the semester.
Weblink course web page

 

Teilnahmevoraussetzungen Good knowledge in the foundations and core areas of computer science are assumed, in particular algorithms and data structures, complexity theory, mathematical logic and programming.

Most importantly, good knowledge of the contents of the courses "Theory of Computer Science" (10948) and "Foundations of Artificial Intelligence" (13548) is assumed, in particular the topic of NP-completeness from the theory course and the topics of state-space search and propositional logic from the AI course. Students who have not previously passed the prerequisite courses are strongly advised to learn the necessary material in self-study prior to the beginning of this course. If you are interested in participating in this course but do not yet have sufficient knowledge of these topics, we strongly encourage you to contact the lecturers prior to the semester to discuss a possible self-study plan.
Anmeldung zur Lehrveranstaltung Registration via https://services.unibas.ch.
Unterrichtssprache Deutsch
Einsatz digitaler Medien Online-Angebot obligatorisch
HörerInnen willkommen

 

Intervall Wochentag Zeit Raum
wöchentlich Montag 14.15-16.00 Spiegelgasse 1, Seminarraum 00.003
wöchentlich Mittwoch 14.15-16.00 Spiegelgasse 1, Seminarraum 00.003

Einzeltermine

Datum Zeit Raum
Montag 15.09.2025 14.15-16.00 Uhr Spiegelgasse 1, Seminarraum 00.003
Mittwoch 17.09.2025 14.15-16.00 Uhr Spiegelgasse 1, Seminarraum 00.003
Montag 22.09.2025 14.15-16.00 Uhr Spiegelgasse 1, Seminarraum 00.003
Mittwoch 24.09.2025 14.15-16.00 Uhr Spiegelgasse 1, Seminarraum 00.003
Montag 29.09.2025 14.15-16.00 Uhr Spiegelgasse 1, Seminarraum 00.003
Mittwoch 01.10.2025 14.15-16.00 Uhr Spiegelgasse 1, Seminarraum 00.003
Montag 06.10.2025 14.15-16.00 Uhr Spiegelgasse 1, Seminarraum 00.003
Mittwoch 08.10.2025 14.15-16.00 Uhr Spiegelgasse 1, Seminarraum 00.003
Montag 13.10.2025 14.15-16.00 Uhr Spiegelgasse 1, Seminarraum 00.003
Mittwoch 15.10.2025 14.15-16.00 Uhr Spiegelgasse 1, Seminarraum 00.003
Montag 20.10.2025 14.15-16.00 Uhr Spiegelgasse 1, Seminarraum 00.003
Mittwoch 22.10.2025 14.15-16.00 Uhr Spiegelgasse 1, Seminarraum 00.003
Montag 27.10.2025 14.15-16.00 Uhr Spiegelgasse 1, Seminarraum 00.003
Mittwoch 29.10.2025 14.15-16.00 Uhr Spiegelgasse 1, Seminarraum 00.003
Montag 03.11.2025 14.15-16.00 Uhr Spiegelgasse 1, Seminarraum 00.003
Mittwoch 05.11.2025 14.15-16.00 Uhr Spiegelgasse 1, Seminarraum 00.003
Montag 10.11.2025 14.15-16.00 Uhr Spiegelgasse 1, Seminarraum 00.003
Mittwoch 12.11.2025 14.15-16.00 Uhr Spiegelgasse 1, Seminarraum 00.003
Montag 17.11.2025 14.15-16.00 Uhr Spiegelgasse 1, Seminarraum 00.003
Mittwoch 19.11.2025 14.15-16.00 Uhr Spiegelgasse 1, Seminarraum 00.003
Montag 24.11.2025 14.15-16.00 Uhr Spiegelgasse 1, Seminarraum 00.003
Mittwoch 26.11.2025 14.15-16.00 Uhr Spiegelgasse 1, Seminarraum 00.003
Montag 01.12.2025 14.15-16.00 Uhr Spiegelgasse 1, Seminarraum 00.003
Mittwoch 03.12.2025 14.15-16.00 Uhr Spiegelgasse 1, Seminarraum 00.003
Montag 08.12.2025 14.15-16.00 Uhr Spiegelgasse 1, Seminarraum 00.003
Mittwoch 10.12.2025 14.15-16.00 Uhr Spiegelgasse 1, Seminarraum 00.003
Montag 15.12.2025 14.15-16.00 Uhr Spiegelgasse 1, Seminarraum 00.003
Mittwoch 17.12.2025 14.15-16.00 Uhr Spiegelgasse 1, Seminarraum 00.003
Module Doktorat Informatik: Empfehlungen (Promotionsfach: Informatik)
Modul: Applications of Distributed Systems (Masterstudium: Computer Science)
Modul: Concepts of Machine Intelligence (Masterstudium: Computer Science)
Modul: Concepts of Machine Intelligence (Master Studienfach: Computer Science)
Modul: Electives in Data Science (Masterstudium: Data Science)
Modul: Methods of Machine Intelligence (Masterstudium: Computer Science)
Prüfung Lehrveranst.-begleitend
Hinweise zur Prüfung Marked homework exercises will be handed out in order to support and assess the learning progress. To qualify for the written examination, students must obtain at least 50% of the total marks from the exercises. Exercise marks do not contribute to the final grade for the course, which is exclusively based on the written examination.
Expected date: Wednesday, January 29, 2025, 2-4 p.m., Biozentrum, room U1.131.

An-/Abmeldung zur Prüfung Anm.: Belegen Lehrveranstaltung; Abm.: stornieren
Wiederholungsprüfung keine Wiederholungsprüfung
Skala 1-6 0,5
Belegen bei Nichtbestehen beliebig wiederholbar
Zuständige Fakultät Philosophisch-Naturwissenschaftliche Fakultät, studiendekanat-philnat@unibas.ch
Anbietende Organisationseinheit Fachbereich Informatik

Zurück zur Auswahl