Zur Merkliste hinzufügen
Zurück zur Auswahl

 

67924-01 - Vorlesung: Privacy-Preserving Methods for Data Science and Distributed Systems (6 KP)

Semester Frühjahrsemester 2026
Weitere Semesterveranstaltungen zu diesen KP 67924-01 (Vorlesung)
67924-02 (Übung)
Angebotsmuster unregelmässig
Dozierende Isabel Wagner (isabel.wagner@unibas.ch, BeurteilerIn)
Inhalt Data and systems based on data are of enormous value in our modern society: medical datasets can help develop new treatments; real-time location data can help optimize traffic flows or contain outbreaks in a pandemic; speech data can improve speech recognition systems for accessibility or convenience. However, data processing may violate the privacy rights of individuals. In this lecture, you will learn how data can be shared and analyzed in a privacy-preserving way.

The following topics will be covered:
1. Private data sharing
* Anonymization and de-anonymization attacks
* k-anonymity
* Differential privacy, local differential privacy
* Synthetic data generation
2. Private data analysis
* Cryptographic approaches: secret sharing, secure multi-party computation
* Privacy preserving machine learning (DPSGD, PATE)
* Federated learning
3. Censorship resistance
4. Privacy engineering
Lernziele * Analyze privacy risks in the contexts of distributed systems and data science
* Understand the principles behind different privacy-enhancing technologies and how they address the privacy risks
* Implement, configure, and evaluate privacy-preserving solutions
Literatur Will be announced in the lecture.
Bemerkungen Note for students of the Master Data Science: you can take this lecture as part of the module "Systems Foundations".
Weblink https://dmi.unibas.ch/de/studium/compute

 

Teilnahmevoraussetzungen Foundations of Distributed Systems (offered in the fall semester) is a prerequisite. For students who have not taken it, the lecturer can provide the list of relevant topics for independent study.

Knowledge of the following topics is a plus, but not a prerequisite.
* Programming in Python

Students with reduced computer science background are encouraged to discuss their prior knowledge with the lecturer.
Unterrichtssprache Englisch
Einsatz digitaler Medien kein spezifischer Einsatz

 

Intervall Wochentag Zeit Raum
wöchentlich Montag 16.15-18.00 Spiegelgasse 1, Seminarraum 00.003

Einzeltermine

Datum Zeit Raum
Montag 16.02.2026 16.15-18.00 Uhr Spiegelgasse 1, Seminarraum 00.003
Montag 23.02.2026 16.15-18.00 Uhr Fasnachtsferien
Montag 02.03.2026 16.15-18.00 Uhr Spiegelgasse 1, Seminarraum 00.003
Montag 09.03.2026 16.15-18.00 Uhr Spiegelgasse 1, Seminarraum 00.003
Montag 16.03.2026 16.15-18.00 Uhr Spiegelgasse 1, Seminarraum 00.003
Montag 23.03.2026 16.15-18.00 Uhr Spiegelgasse 1, Seminarraum 00.003
Montag 30.03.2026 16.15-18.00 Uhr Spiegelgasse 1, Seminarraum 00.003
Montag 06.04.2026 16.15-18.00 Uhr Ostern
Montag 13.04.2026 16.15-18.00 Uhr Spiegelgasse 1, Seminarraum 00.003
Montag 20.04.2026 16.15-18.00 Uhr Spiegelgasse 1, Seminarraum 00.003
Montag 27.04.2026 16.15-18.00 Uhr Spiegelgasse 1, Seminarraum 00.003
Montag 04.05.2026 16.15-18.00 Uhr Spiegelgasse 1, Seminarraum 00.003
Montag 11.05.2026 16.15-18.00 Uhr Spiegelgasse 1, Seminarraum 00.003
Montag 18.05.2026 16.15-18.00 Uhr Spiegelgasse 1, Seminarraum 00.003
Montag 25.05.2026 16.15-18.00 Uhr Pfingstmontag
Module Doktorat Informatik: Empfehlungen (Promotionsfach: Informatik)
Modul: Applications of Distributed Systems (Masterstudium: Computer Science)
Modul: Applications of Machine Intelligence (Masterstudium: Computer Science)
Modul: Concepts of Distributed Systems (Master Studienfach: Computer Science)
Modul: Methods of Distributed Systems (Masterstudium: Computer Science)
Modul: Systems Foundations (Masterstudium: Data Science)
Prüfung Lehrveranst.-begleitend
Hinweise zur Prüfung continuous assessment

Please note:
40% project (writeup and presentation)
60% written exam

A 50% score on each homework set is required to participate in the final exam.

Expected date for written exam: tba
for project presentations: tba

An-/Abmeldung zur Prüfung Anm.: Belegen Lehrveranstaltung; Abm.: stornieren
Wiederholungsprüfung keine Wiederholungsprüfung
Skala 1-6 0,5
Belegen bei Nichtbestehen beliebig wiederholbar
Zuständige Fakultät Philosophisch-Naturwissenschaftliche Fakultät, studiendekanat-philnat@unibas.ch
Anbietende Organisationseinheit Fachbereich Informatik

Zurück zur Auswahl