Zur Merkliste hinzufügen
Zurück zur Auswahl

 

77512-01 - Seminar: Generative AI in Social Science Research (3 KP)

Semester Herbstsemester 2025
Angebotsmuster unregelmässig
Dozierende Johanna Einsiedler (johanna.einsiedler@unibas.ch, BeurteilerIn)
Inhalt This course will cover new developments on the usage of generative AI - particularly large language models (LLMs) - as tools in social science research. Drawing on recent empirical studies, we examine how LLMs are used across the research pipeline: as tools for hypothesis generation, synthetic survey respondents, qualitative interviewers, behavioral simulation agents, causal inference assistants, and tools for text analysis. We will critically assess both the methodological potential and ethical challenges these tools pose, and engage hands-on with current frameworks, experiments, and applications. Through structured discussions and active experimentation, students will explore how LLMs can enhance, reshape, or challenge traditional empirical methods in the social sciences.

The seminar will be a mixture of discussion and experimentation. Students will be expected to read literature, lead discussions and develop their own research plans. Use of generative AI is encouraged.

No prior coding experience is required. Familiarity with core social science research concepts such as surveys, experiments and observational data analysis is heavily recommended. A basic understanding of inferential statistics is also preferred.
Lernziele Students will learn to critically evaluate the use of generative AI tools in social science research, identifying their strengths, limitations, and appropriate applications.

Students will gain practical experience designing and analyzing studies that integrate large language models into the research process.

This course has a learning-by-doing format. Students must bring their own laptops to the course.
Only three absences are permitted; medical attestation is required for further absences.
Literatur Bail, C. A. (2024). Can generative AI improve social science? Proceedings of the National Academy of Sciences, 121(21), e2314021121. https://doi.org/10.1073/pnas.2314021121

Research articles will be provided for every session.

 

Teilnahmevoraussetzungen Participation is limited. Priority will be given to students of Digital Humanities if the course is oversubscribed.
Unterrichtssprache Englisch
Einsatz digitaler Medien kein spezifischer Einsatz

 

Intervall Wochentag Zeit Raum
wöchentlich Montag 14.15-16.00 Kollegienhaus, Seminarraum 106

Einzeltermine

Datum Zeit Raum
Montag 22.09.2025 14.15-16.00 Uhr Kollegienhaus, Seminarraum 106
Montag 29.09.2025 14.15-16.00 Uhr Kollegienhaus, Seminarraum 106
Montag 06.10.2025 14.15-16.00 Uhr Kollegienhaus, Seminarraum 106
Montag 13.10.2025 14.15-16.00 Uhr Kollegienhaus, Seminarraum 106
Montag 20.10.2025 14.15-16.00 Uhr Kollegienhaus, Seminarraum 106
Montag 27.10.2025 14.15-16.00 Uhr Kollegienhaus, Seminarraum 106
Montag 03.11.2025 14.15-16.00 Uhr Kollegienhaus, Seminarraum 106
Montag 10.11.2025 14.15-16.00 Uhr Kollegienhaus, Seminarraum 106
Montag 17.11.2025 14.15-16.00 Uhr Kollegienhaus, Seminarraum 106
Montag 24.11.2025 14.15-16.00 Uhr Kollegienhaus, Seminarraum 106
Montag 01.12.2025 14.15-16.00 Uhr Kollegienhaus, Seminarraum 106
Montag 08.12.2025 14.15-16.00 Uhr Kollegienhaus, Seminarraum 107
Montag 15.12.2025 14.15-16.00 Uhr Kollegienhaus, Seminarraum 106
Module Europäische Geschichte in globaler Perspektive (Masterstudium - Philosophisch-Historische Fakultät)
Modul: Digital Humanities, Culture and Society (Master Studienfach: Digital Humanities)
Modul: Forschung und Praxis (Master Studienfach: Osteuropäische Geschichte)
Wahlbereich Bachelor Geschichte: Empfehlungen (Bachelor Studienfach: Geschichte)
Wahlbereich Master Geschichte: Empfehlungen (Master Studienfach: Geschichte)
Prüfung Lehrveranst.-begleitend
An-/Abmeldung zur Prüfung Anmelden: Belegen; Abmelden: nicht erforderlich
Wiederholungsprüfung keine Wiederholungsprüfung
Skala Pass / Fail
Belegen bei Nichtbestehen beliebig wiederholbar
Zuständige Fakultät Philosophisch-Historische Fakultät, studadmin-philhist@unibas.ch
Anbietende Organisationseinheit Digital Humanities Lab

Zurück zur Auswahl