Zur Merkliste hinzufügen
Zurück zur Auswahl

 

75901-01 - Kolloquium: Text Analysis in R: From Basic Techniques to Modern AI (3 KP)

Semester Frühjahrsemester 2026
Angebotsmuster Jedes Frühjahrsem.
Dozierende Dominik Meier (dominik.meier@unibas.ch, BeurteilerIn)
Inhalt In this course, students learn the theoretical and practical basics of text analysis with R, from basic data preparation methods to advanced models for Natural Language Processing (NLP). Starting with simple frequency analysis and topic models, we gradually work our way up to more sophisticated methods that include the use of current Large Language Models (LLMs). Various packages, algorithms and evaluation strategies will be introduced and applied in practical exercises. At the end of the course, participants will be able to independently process complex text datasets, develop customized models and critically evaluate modern AI-supported analysis tools.
Lernziele By the end of this course, students will:
1. Understand the theoretical underpinnings of text analysis in social sciences.
2. Develop and preprocess text datasets for analysis.
3. Apply machine learning methods for text classification and clustering.
4. Implement advanced NLP models, including LLMs and transformers, for diverse tasks.
5. Critically evaluate the use and limitations of AI in text analysis.
Literatur Grimmer, J., Roberts, M. E., & Stewart, B. M. (2022). Text as data: A new framework for machine learning and the social sciences. Princeton University Press.

 

Anmeldung zur Lehrveranstaltung The number of participants is limited to 30 per course. Interested students should email Dominik Meier (dominik.meier(at)unibas.ch) before February 09, 2026. Please include:
your name, study major, number of completed semesters, and matriculation number,


We will select and confirm 30 participants on February 13, 2026. After receiving the confirmation email, you can enroll through the Online Services (services.unibas.ch).

Eucor-Students and mobility students of other Swiss Universities or the FHNW first have to register at the University of Basel BEFORE the application deadline and receive their login data by post (e-mail address of the University of Basel). Processing time up to a week! Detailed information can be found here: https://www.unibas.ch/de/Studium/Mobilitaet.html. After successful application, you can enroll for the course in the Online Services (services.unibas.ch).
Unterrichtssprache Englisch
Einsatz digitaler Medien kein spezifischer Einsatz

 

Intervall Wochentag Zeit Raum
wöchentlich Donnerstag 12.15-14.00 Wirtschaftswissenschaftliche Fakultät, Grosses PC-Labor S18 HG.37

Einzeltermine

Datum Zeit Raum
Donnerstag 19.02.2026 12.15-14.00 Uhr Wirtschaftswissenschaftliche Fakultät, Grosses PC-Labor S18 HG.37
Donnerstag 26.02.2026 12.15-14.00 Uhr Fasnachtsferien
Donnerstag 05.03.2026 12.15-14.00 Uhr Wirtschaftswissenschaftliche Fakultät, Grosses PC-Labor S18 HG.37
Donnerstag 12.03.2026 12.15-14.00 Uhr Wirtschaftswissenschaftliche Fakultät, Grosses PC-Labor S18 HG.37
Donnerstag 19.03.2026 12.15-14.00 Uhr Wirtschaftswissenschaftliche Fakultät, Grosses PC-Labor S18 HG.37
Donnerstag 26.03.2026 12.15-14.00 Uhr Wirtschaftswissenschaftliche Fakultät, Grosses PC-Labor S18 HG.37
Donnerstag 02.04.2026 12.15-14.00 Uhr Ostern
Donnerstag 09.04.2026 12.15-14.00 Uhr Wirtschaftswissenschaftliche Fakultät, Grosses PC-Labor S18 HG.37
Donnerstag 16.04.2026 12.15-14.00 Uhr Wirtschaftswissenschaftliche Fakultät, Grosses PC-Labor S18 HG.37
Donnerstag 23.04.2026 12.15-14.00 Uhr Wirtschaftswissenschaftliche Fakultät, Grosses PC-Labor S18 HG.37
Donnerstag 30.04.2026 12.15-14.00 Uhr Wirtschaftswissenschaftliche Fakultät, Grosses PC-Labor S18 HG.37
Donnerstag 07.05.2026 12.15-14.00 Uhr Wirtschaftswissenschaftliche Fakultät, Grosses PC-Labor S18 HG.37
Donnerstag 14.05.2026 12.15-14.00 Uhr Auffahrt
Donnerstag 21.05.2026 12.15-14.00 Uhr Wirtschaftswissenschaftliche Fakultät, Grosses PC-Labor S18 HG.37
Donnerstag 28.05.2026 12.15-14.00 Uhr Wirtschaftswissenschaftliche Fakultät, Grosses PC-Labor S18 HG.37
Module General Electives in Business and Economics: Zusätzliches Lehrangebot (Masterstudium: Wirtschaftswissenschaften)
General Electives in Economics and Public Policy: Zusätzliches Lehrangebot (Masterstudium: Economics and Public Policy)
General Electives in Finance and Money: Zusätzliches Lehrangebot (Masterstudium: Finance and Money)
Modul: Technology Field (Masterstudium: Business and Technology)
Prüfung Leistungsnachweis
Hinweise zur Prüfung - Participation (10%):
Active participation in class discussions, practical exercises, and group activities is essential for fostering a collaborative learning environment. This component will be evaluated based on attendance, engagement in discussions, and contributions to group tasks during hands-on sessions.

- Final Project (60%):
Students will independently conduct a comprehensive text analysis project, applying the methods and tools covered in the course to a dataset of their choice. The project should include:
- Problem Definition: A clear research question or practical problem related to text analysis.
- Data Preparation: Development and preprocessing of a text dataset.
- Methodology: Implementation of relevant text analysis techniques, including at least one advanced method (e.g., LLMs, transformers).
- Results and Insights: Presentation of findings with appropriate visualizations and interpretations.
- Critical Evaluation: Discussion of limitations, ethical considerations, and potential improvements.

The project will culminate in a written report and a final in-class presentation in the last week. Evaluation will be based on originality, methodological rigor, use of course concepts, clarity of presentation, and the depth of critical analysis.

- Oral Defense (30%):
After the final presentation, each student will participate in a brief oral defense. The purpose of the defense is to verify genuine understanding of the submitted work and to ensure that students can demonstrate understanding beyond what might be produced through uncritical reliance on LLM-generated content. The instructor will ask questions about the student's project, probing their understanding of the methods applied, the reasoning behind analytical decisions, and their interpretation of results.
An-/Abmeldung zur Prüfung Anm.: Belegen Lehrveranstaltung; Abm.: stornieren
Wiederholungsprüfung keine Wiederholungsprüfung
Skala 1-6 0,1
Belegen bei Nichtbestehen beliebig wiederholbar
Zuständige Fakultät Wirtschaftswissenschaftliche Fakultät / WWZ, studiendekanat-wwz@unibas.ch
Anbietende Organisationseinheit Wirtschaftswissenschaftliche Fakultät / WWZ

Zurück zur Auswahl