Zur Merkliste hinzufügen
Zurück zur Auswahl

 

77575-01 - Seminar: Natural Language Processing (3 KP)

Semester Herbstsemester 2025
Angebotsmuster unregelmässig
Dozierende Sepideh Alassi (sepideh.alassi@unibas.ch, BeurteilerIn)
Inhalt Course Outline:

Day 1: Text as Data: Anatomy of text, preprocessing pipelines, and the statistical properties of language.

Day 2: Word Meaning and Representation: Word embeddings, semantic similarity, and co-occurrence matrices.

Day 3: Language Structures: N-grams, POS tagging, dependency parsing, and Named Entity Recognition (NER). You will also learn how to train a custom NER model on your own corpus and evaluate its performance.

Day 4: Higher Level Semantics: Sentiment analysis and topic modelling.

Monday 15.12.2025 10:15-12:15 h and 14:15-16:15 h
Tuesday 16.12.2025 10:15-12:15 h and 14:15-16:15 h
Wednesday 17.12.2025 10:15-12:15 h and 14:15-16:15 h
Thursday 18.12.2025 10:15-12:15 h and 14:15-16:15 h

Venue will be announced
Lernziele This course offers a practical introduction to Natural Language Processing (NLP) and demonstrates how its core concepts can be applied using Python. Each day is structured into two parts: morning sessions provide a theoretical overview of key topics, while afternoon sessions focus on practical examples and hands-on exercises.

You will work with widely used Python libraries, including TensorFlow, spaCy, scikit-learn, Keras, and NLTK, to gain both conceptual understanding and practical skills.
Literatur - Jacob Eisenstein, Introduction to Natural Language Processing, The MIT Press, 2019.
- Hobson Lane, Hannes Hapke, Cole Howard, Natural Language Processing in Action: Understanding, Analyzing, and Generating Text with Python, Second Edition, Manning, 2025.
Bemerkungen The course will be highly practical; therefore, attendance is mandatory.

Please bring your own laptop with Python 3.12 installed. I also recommend installing the PyCharm IDE to facilitate programming. The Professional Edition is available free of charge for students—simply register with your UniBas email address on JetBrains.

Download link: https://www.jetbrains.com/pycharm/download/

 

Teilnahmevoraussetzungen This course is intended for students with prior knowledge of Python, particularly those who have completed Introduction to Python for Humanities (course no. 64429-01).

Students who have not taken this course but possess basic Python programming experience are encouraged to contact Dr. Sepideh Alassi to confirm that they meet the prerequisites.
Anmeldung zur Lehrveranstaltung The number of participants is limited. In case of over-subscription, students of Digital Humanities will be given priority.
Unterrichtssprache Englisch
Einsatz digitaler Medien kein spezifischer Einsatz

 

Intervall Wochentag Zeit Raum

Keine Einzeltermine verfügbar, bitte informieren Sie sich direkt bei den Dozierenden.

Module Modul: Creating, Analyzing and Visualizing of Data (Master Studienfach: Digital Humanities)
Prüfung Lehrveranst.-begleitend
Hinweise zur Prüfung At the end of the course, students will begin working on a mini-project to be submitted by mid-January 2026, accompanied by a written report. Assessment will be based on the quality of the project.
An-/Abmeldung zur Prüfung Anmelden: Belegen; Abmelden: nicht erforderlich
Wiederholungsprüfung keine Wiederholungsprüfung
Skala Pass / Fail
Belegen bei Nichtbestehen beliebig wiederholbar
Zuständige Fakultät Philosophisch-Historische Fakultät, studadmin-philhist@unibas.ch
Anbietende Organisationseinheit Digital Humanities Lab

Zurück zur Auswahl