Zur Merkliste hinzufügen
Zurück zur Auswahl

 

17164-01 - Vorlesung: High Performance Computing (6 KP)

Semester Frühjahrsemester 2026
Angebotsmuster Jedes Frühjahrsem.
Dozierende Florina M. Ciorba (florina.ciorba@unibas.ch, BeurteilerIn)
Inhalt High performance computing (HPC) enables modern scientific discovery, large-scale data analysis, and computational science. From simulating climate systems and training advanced machine-learning models to enabling real-time processing of data produced by scientific instruments, efficient parallel programs are essential to achieving breakthrough results. Achieving this performance requires a deep understanding of parallel programming models, system architectures, and the principles that influence scalable computation.

In this lecture, you will expand on the parallel programming foundations introduced in Foundations of Distributed Systems course (8 CP) and learn additional core concepts and techniques required to design, implement, and optimize high-performance applications.

We will discuss:
* Parallel systems architectures
* Parallel applications workloads
* Advanced parallel programming models and languages (OpenMP, MPI, OpenACC, CUDA, and combinations thereof)
* Fault tolerance and resilience
* Performance engineering and performance reproducibility
* The role of HPC in the age of AI
* Novel/upcoming models of computation
Lernziele * Understand how computational problems can be efficiently parallelized, distributed, and executed across diverse compute entities, from multi- and heterogeneous cores within a single machine to thousands of nodes in large-scale HPC systems.
* Know the advanced principles of parallel and distributed programming needed to reason about performance, scalability, and resource utilization.
* Understand the importance of algorithms, performance-optimization techniques, performance engineering, correctness, and reproducibility, as well as the role of HPC in the era of AI-driven workloads.
* Implement, analyze, and evaluate high-performance solutions using modern HPC tools, programming models, and profiling techniques.
Literatur Course material, such as book titles and links to online information, are provided in the lectures.
Bemerkungen Target group:
* Master students
* Doctoral students
* Postdoctoral researchers

from computer science, computational science, digital humanities, and all disciplines that (need to) process information on more than one computer and demand high performance.

Note for students of the Master Computer Science: you can take this lecture as part of the modules “Concepts of Distributed Systems”, “Applications of Distributed Systems”, “Applications of Machine Intelligence”
Note for students of the Master Data Science: you can take this lecture as part of the module "Systems Foundations".
Note for students of the Master Computational Biology and Bioinformatics: you can take this lecture as part of the module “Vertiefungsfächer Theorie und Vertiefungsfächer Biologie”.
Weblink Website of the HPC Lecture

 

Teilnahmevoraussetzungen * Foundations of Distributed Systems (8 CP Master lecture offered in the fall semesters). Students who have not taken it, the lecturer can provide the list of relevant topics for independent study.
* Basic knowledge of C/C++ programming.

Students with reduced computer science background are still encouraged to enroll and discuss their prior knowledge with the lecturer and the course assistants.
Anmeldung zur Lehrveranstaltung Your online/services account.
Unterrichtssprache Englisch
Einsatz digitaler Medien kein spezifischer Einsatz
HörerInnen willkommen

 

Intervall Wochentag Zeit Raum
wöchentlich Donnerstag 10.15-12.00 Spiegelgasse 5, Seminarraum 05.002
wöchentlich Donnerstag 12.15-14.00 Spiegelgasse 5, Seminarraum 05.002

Einzeltermine

Datum Zeit Raum
Donnerstag 19.02.2026 10.15-12.00 Uhr Spiegelgasse 5, Seminarraum 05.002
Donnerstag 19.02.2026 12.15-14.00 Uhr Spiegelgasse 5, Seminarraum 05.002
Donnerstag 26.02.2026 10.15-12.00 Uhr Fasnachtsferien
Donnerstag 26.02.2026 12.15-14.00 Uhr Fasnachtsferien
Donnerstag 05.03.2026 10.15-12.00 Uhr Spiegelgasse 5, Seminarraum 05.002
Donnerstag 05.03.2026 12.15-14.00 Uhr Spiegelgasse 5, Seminarraum 05.002
Donnerstag 12.03.2026 10.15-12.00 Uhr Spiegelgasse 5, Seminarraum 05.002
Donnerstag 12.03.2026 12.15-14.00 Uhr Spiegelgasse 5, Seminarraum 05.002
Donnerstag 19.03.2026 10.15-12.00 Uhr Spiegelgasse 5, Seminarraum 05.002
Donnerstag 19.03.2026 12.15-14.00 Uhr Spiegelgasse 5, Seminarraum 05.002
Donnerstag 26.03.2026 10.15-12.00 Uhr Spiegelgasse 5, Seminarraum 05.002
Donnerstag 26.03.2026 12.15-14.00 Uhr Spiegelgasse 5, Seminarraum 05.002
Donnerstag 02.04.2026 10.15-12.00 Uhr Ostern
Donnerstag 02.04.2026 12.15-14.00 Uhr Ostern
Donnerstag 09.04.2026 10.15-12.00 Uhr Spiegelgasse 5, Seminarraum 05.002
Donnerstag 09.04.2026 12.15-14.00 Uhr Spiegelgasse 5, Seminarraum 05.002
Donnerstag 16.04.2026 10.15-12.00 Uhr Spiegelgasse 5, Seminarraum 05.002
Donnerstag 16.04.2026 12.15-14.00 Uhr Spiegelgasse 5, Seminarraum 05.002
Donnerstag 23.04.2026 10.15-12.00 Uhr Spiegelgasse 5, Seminarraum 05.002
Donnerstag 23.04.2026 12.15-14.00 Uhr Spiegelgasse 5, Seminarraum 05.002
Donnerstag 30.04.2026 10.15-12.00 Uhr Spiegelgasse 5, Seminarraum 05.002
Donnerstag 30.04.2026 12.15-14.00 Uhr Spiegelgasse 5, Seminarraum 05.002
Donnerstag 07.05.2026 10.15-12.00 Uhr Spiegelgasse 5, Seminarraum 05.002
Donnerstag 07.05.2026 12.15-14.00 Uhr Spiegelgasse 5, Seminarraum 05.002
Donnerstag 14.05.2026 10.15-12.00 Uhr Auffahrt
Donnerstag 14.05.2026 12.15-14.00 Uhr Auffahrt
Donnerstag 21.05.2026 10.15-12.00 Uhr Spiegelgasse 5, Seminarraum 05.002
Donnerstag 21.05.2026 12.15-14.00 Uhr Spiegelgasse 5, Seminarraum 05.002
Donnerstag 28.05.2026 10.15-12.00 Uhr Spiegelgasse 5, Seminarraum 05.002
Donnerstag 28.05.2026 12.15-14.00 Uhr Spiegelgasse 5, Seminarraum 05.002
Donnerstag 11.06.2026 10.00-12.00 Uhr Biozentrum, Hörsaal U1.141
Module Doktorat Informatik: Empfehlungen (Promotionsfach: Informatik)
Modul: Applications of Distributed Systems (Masterstudium: Computer Science)
Modul: Applications of Machine Intelligence (Masterstudium: Computer Science)
Modul: Concepts of Distributed Systems (Master Studienfach: Computer Science)
Modul: Concepts of Distributed Systems (Masterstudium: Computer Science)
Modul: Systems Foundations (Masterstudium: Data Science)
Vertiefungsfächer Theorie und Vertiefungsfächer Biologie (Masterstudium: Computational Biology and Bioinformatics)
Prüfung Lehrveranst.-begleitend
Hinweise zur Prüfung Continuous assessment.

Please note: final grade of the course is the weighted average of the
40% project grade (writeup and presentation)
60% written exam grade.

A 50% score on each homework set is required to participate in the final written exam.

Expected date for written exam: Thursday, 11/06/26; 10-12 a.m. (with presence) Biozentrum, Room U1.141
for project presentations: Thursday 25/06/26 and Friday 26/06/26, 09:00-16:00. Organische Chemie, Room Kleiner Hörsaal.
An-/Abmeldung zur Prüfung Anm.: Belegen Lehrveranstaltung; Abm.: stornieren
Wiederholungsprüfung keine Wiederholungsprüfung
Skala 1-6 0,5
Belegen bei Nichtbestehen beliebig wiederholbar
Zuständige Fakultät Philosophisch-Naturwissenschaftliche Fakultät, studiendekanat-philnat@unibas.ch
Anbietende Organisationseinheit Fachbereich Informatik

Zurück zur Auswahl