Zur Merkliste hinzufügen
Zurück zur Auswahl

 

78302-01 - Übung: Introduction to Social Data Science Methods (3 KP)

Semester Frühjahrsemester 2026
Angebotsmuster unregelmässig
Dozierende Rosa Lavelle-Hill (rosa.lavelle-hill@unibas.ch, BeurteilerIn)
Inhalt This course provides a hands-on introduction to social data science methods with a strong focus on applied research workflows in the social sciences. Students will learn how to design studies, collect data, and analyze social data using a range of quantitative and computational methods. The course emphasizes practical skills, collaborative group work, and the end-to-end research process—from formulating research questions to disseminating results. It is designed to complement the more theoretical lecture-based course Introduction to Social Data Science.
Students will collect and analyze their own survey data in groups using core data analysis methods, including descriptive statistics and basic inferential statistics in Python (example scripts provided). The course further introduces computational social science techniques such as network analysis, decision tree analysis, natural language processing (NLP) for qualitative data, and digital data collection via web scraping and APIs.
Exercise sessions are structured around guided group work and applied analysis tasks. Students will analyze data using provided scripts in Python (via Google Colab or Jupyter Notebooks) and external tools such as Gephi for network analysis. Throughout the course, participants progressively build their own data analysis project, culminating in a group presentation that integrates multiple methods covered in the course.
Lernziele To understand and critically evaluate social data science methods and their role in social science research.
To design and implement surveys, including Likert-scale and open-ended measures, with appropriate validation and sampling strategies.
To perform applied data analyses in Python (with the help of example scripts provided), including descriptive statistics, regression, and basic machine learning–based methods such as decision trees.
To apply computational methods such as network analysis, NLP, and data collection via scraping and APIs to real social data.
To communicate and disseminate data-driven research findings clearly and effectively.
Literatur Breiman, L. (2001). Statistical modeling: The two cultures (with comments and a rejoinder by the author). Statistical science, 16(3), 199-231. https://projecteuclid.org/journals/statistical-science/volume-16/issue-3/Statistical-Modeling--The-Two-Cultures-with-comments-and-a/10.1214/ss/1009213726.pdf
Borgatti, S. P., Mehra, A., Brass, D. J., & Labianca, G. (2009). Network analysis in the social sciences. science, 323(5916), 892-895. https://www.science.org/doi/pdf/10.1126/science.1165821
Shmueli, G. (2010). To explain or to predict?. Statistical science, 289-310. https://www.jstor.org/stable/pdf/41058949
Programming with Python for Social Scientists, Philip D. Brooker, Published by SAGE, 2020

 

Teilnahmevoraussetzungen The number of participants is limited. In case of over-subscription, students of Digital Humanities will be given priority.
Unterrichtssprache Englisch
Einsatz digitaler Medien kein spezifischer Einsatz

 

Intervall Wochentag Zeit Raum
wöchentlich Dienstag 14.15-16.00 Kollegienhaus, Hörsaal 117

Einzeltermine

Datum Zeit Raum
Dienstag 24.02.2026 14.15-16.00 Uhr Fasnachtsferien
Dienstag 03.03.2026 14.15-16.00 Uhr Kollegienhaus, Hörsaal 117
Dienstag 10.03.2026 14.15-16.00 Uhr Kollegienhaus, Hörsaal 117
Dienstag 17.03.2026 14.15-16.00 Uhr Kollegienhaus, Hörsaal 117
Dienstag 24.03.2026 14.15-16.00 Uhr Kollegienhaus, Hörsaal 117
Dienstag 31.03.2026 14.15-16.00 Uhr Kollegienhaus, Hörsaal 117
Dienstag 07.04.2026 14.15-16.00 Uhr Kollegienhaus, Hörsaal 117
Dienstag 14.04.2026 14.15-16.00 Uhr Kollegienhaus, Hörsaal 117
Dienstag 21.04.2026 14.15-16.00 Uhr Kollegienhaus, Hörsaal 117
Dienstag 28.04.2026 14.15-16.00 Uhr Kollegienhaus, Hörsaal 117
Dienstag 05.05.2026 14.15-16.00 Uhr Kollegienhaus, Hörsaal 117
Dienstag 12.05.2026 14.15-16.00 Uhr Kollegienhaus, Hörsaal 117
Dienstag 19.05.2026 14.15-16.00 Uhr Kollegienhaus, Hörsaal 117
Dienstag 26.05.2026 14.15-16.00 Uhr Kollegienhaus, Hörsaal 117
Module Modul: Digital Humanities, Culture and Society (Master Studienfach: Digital Humanities)
Modul: Introduction to Digital Humanities (Master Studienfach: Digital Humanities)
Modul: Methoden der Gesellschaftswissenschaften (Masterstudium: European Global Studies)
Prüfung Lehrveranst.-begleitend
An-/Abmeldung zur Prüfung Anmelden: Belegen; Abmelden: nicht erforderlich
Wiederholungsprüfung keine Wiederholungsprüfung
Skala Pass / Fail
Belegen bei Nichtbestehen beliebig wiederholbar
Zuständige Fakultät Philosophisch-Historische Fakultät, studadmin-philhist@unibas.ch
Anbietende Organisationseinheit Digital Humanities Lab

Zurück zur Auswahl