Back to selection
Semester | spring semester 2017 |
Course frequency | Irregular |
Lecturers | Philipp Treutlein (philipp.treutlein@unibas.ch, Assessor) |
Content | Quantum control of matter with light and light with matter is at the heart of many spectacular advances in the field of quantum science and technology. Light-matter interactions play an essential role in a variety of systems such as ultracold atomic gases, trapped ions, NV centers in diamond, semiconductor quantum dots, optomechanical systems and, in the microwave domain, in superconducting devices. Experiments and theory are often closely connected in this field. This lecture gives an introduction to the physics of light-matter interactions and its applications in quantum technology. Topics to be discussed include: Two-level system interacting with light, Rabi oscillations, Ramsey spectroscopy, optical Bloch equations, mechanical effects of light, laser cooling and trapping, Jaynes-Cummings model, spontaneous emission, cavity quantum electrodynamics, optomechanics, three-level atoms interacting with light: EIT, coherent population trapping, quantum memories for single photons, quantum metrology. |
Learning objectives | The goal is to provide a solid background for research involving light-matter interactions in the fields of quantum optics, atomic physics and condensed-matter physics. |
Bibliography | Will be discussed in the lecture. |
Comments | This is the second part of a two-semester course on quantum optics. The first part, offered in fall, focuses on quantum states of light. The second part, offered in spring, focuses on light-matter interactions. The two parts are designed such that they can also be taken independently or in reverse order. |
Admission requirements | Basic knowledge of quantum mechanics, classical optics and atomic physics. |
Language of instruction | English |
Use of digital media | No specific media used |
Course auditors welcome |
Interval | Weekday | Time | Room |
---|
No dates available. Please contact the lecturer.
Modules |
Module Specialisation: Physics (Master Physics) Module Specialisation: Physics (Master Nanosciences) |
Assessment format | continuous assessment |
Assessment registration/deregistration | Reg.: course registration, dereg: cancel course registration |
Repeat examination | no repeat examination |
Scale | 1-6 0,5 |
Repeated registration | as often as necessary |
Responsible faculty | Faculty of Science, studiendekanat-philnat@unibas.ch |
Offered by | Departement Physik |