Back to selection
| Semester | spring semester 2022 | 
| Further events belonging to these CP | 	
										17165-01 (Lecture) 17165-02 (Practical course)  | 
								
| Course frequency | Every spring sem. | 
| Lecturers | Volker Roth (volker.roth@unibas.ch, Assessor) | 
| Content | Probabilities Generative models for discrete data Classification & regression: Frequentist & Bayesian approaches, model selection, sparse models Neural networks: Feed-forward & recurrent topologies, encoder-decoder models, interpretability in deep learning models Elements of statistical learning theory Support Vector Machines and kernels, Gaussian processes Mixture models, mixtures of experts Linear latent variable models: Factor analysis, PCA, CCA Non-linear latent variable models: Variational autoencoders, deep information bottlenecks  | 
								
| Learning objectives | Understand the theoretical foundations of Machine Learning Understand and apply practical learning algorithms: linear and generalized linear models for regression and classification, neural networks, Support Vector machines & kernel methods, mixture models & clustering. Program in Python. PyTorch & Tensorflow  | 
								
| Bibliography | https://mitpress.mit.edu/books/machine-learning-1 https://www.deeplearningbook.org/  | 
								
| Comments | Target group: Master students | 
| Weblink | Course website | 
| Admission requirements | Basic knowledge and skills regarding pattern recognition, numerical analysis, and statistics | 
| Course application | Übung: https://courses.cs.unibas.ch | 
| Language of instruction | English | 
| Use of digital media | Online, mandatory | 
| Course auditors welcome | 
| Interval | Weekday | Time | Room | 
|---|---|---|---|
| wöchentlich | Tuesday | 10.15-12.00 | Physik, Neuer Hörsaal 1, Foyer EG | 
| wöchentlich | Wednesday | 14.15-16.00 | Kollegienhaus, Hörsaal 118 | 
| Date | Time | Room | 
|---|---|---|
| Tuesday 22.02.2022 | 10.15-12.00 | Physik, Grosser Hörsaal, 1.03 | 
| Wednesday 23.02.2022 | 14.15-16.00 | Biozentrum, Seminarraum U1.195 | 
| Tuesday 01.03.2022 | 10.15-12.00 | Physik, Neuer Hörsaal 1, Foyer EG | 
| Wednesday 02.03.2022 | 14.15-16.00 | Kollegienhaus, Hörsaal 118 | 
| Tuesday 08.03.2022 | 10.15-12.00 | Fasnachtsferien | 
| Wednesday 09.03.2022 | 14.15-16.00 | Fasnachtsferien | 
| Tuesday 15.03.2022 | 10.15-12.00 | Physik, Neuer Hörsaal 1, Foyer EG | 
| Wednesday 16.03.2022 | 14.15-16.00 | Kollegienhaus, Hörsaal 118 | 
| Tuesday 22.03.2022 | 10.15-12.00 | Physik, Neuer Hörsaal 1, Foyer EG | 
| Wednesday 23.03.2022 | 14.15-16.00 | Kollegienhaus, Hörsaal 118 | 
| Tuesday 29.03.2022 | 10.15-12.00 | Physik, Grosser Hörsaal, 1.03 | 
| Wednesday 30.03.2022 | 14.15-16.00 | Kollegienhaus, Hörsaal 118 | 
| Tuesday 05.04.2022 | 10.15-12.00 | Physik, Neuer Hörsaal 1, Foyer EG | 
| Wednesday 06.04.2022 | 14.15-16.00 | Kollegienhaus, Hörsaal 118 | 
| Tuesday 12.04.2022 | 10.15-12.00 | Physik, Neuer Hörsaal 1, Foyer EG | 
| Wednesday 13.04.2022 | 14.15-16.00 | Kollegienhaus, Hörsaal 118 | 
| Tuesday 19.04.2022 | 10.15-12.00 | Physik, Neuer Hörsaal 1, Foyer EG | 
| Wednesday 20.04.2022 | 14.15-16.00 | Kollegienhaus, Hörsaal 118 | 
| Tuesday 26.04.2022 | 10.15-12.00 | Physik, Neuer Hörsaal 1, Foyer EG | 
| Wednesday 27.04.2022 | 14.15-16.00 | Kollegienhaus, Hörsaal 118 | 
| Tuesday 03.05.2022 | 10.15-12.00 | Physik, Neuer Hörsaal 1, Foyer EG | 
| Wednesday 04.05.2022 | 14.15-16.00 | Kollegienhaus, Hörsaal 118 | 
| Tuesday 10.05.2022 | 10.15-12.00 | Physik, Neuer Hörsaal 1, Foyer EG | 
| Wednesday 11.05.2022 | 14.15-16.00 | Kollegienhaus, Hörsaal 118 | 
| Tuesday 17.05.2022 | 10.15-12.00 | Physik, Neuer Hörsaal 1, Foyer EG | 
| Wednesday 18.05.2022 | 14.15-16.00 | Kollegienhaus, Hörsaal 118 | 
| Tuesday 24.05.2022 | 10.15-12.00 | Physik, Neuer Hörsaal 1, Foyer EG | 
| Wednesday 25.05.2022 | 14.15-16.00 | Kollegienhaus, Hörsaal 118 | 
| Tuesday 31.05.2022 | 10.15-12.00 | Physik, Neuer Hörsaal 1, Foyer EG | 
| Wednesday 01.06.2022 | 14.15-16.00 | Kollegienhaus, Hörsaal 118 | 
| Modules | 
								Doctorate Computer Science: Recommendations (PhD subject: Computer Science) General Electives in Business and Economics: Additional Courses (Master's Studies: Business and Economics) Kernfächer und Seminar (Master's Studies: Computational Biology and Bioinformatics) Modul: Concepts of Machine Intelligence (Master's degree subject: Computer Science) Module: Applications of Distributed Systems (Master's Studies: Computer Science) Module: Concepts of Machine Intelligence (Master's Studies: Computer Science) Module: Interdisciplinary and Transfer of Knowledge (Master's Studies: Actuarial Science)  | 
						
| Assessment format | continuous assessment | 
| Assessment details | Oral exam Expected Date: 22/23/24 June 2022, Spiegelgasse 5, room 05.001. Admission to the examination: handing in "reasonable" solutions to >70% of the exercises  | 
							
| Assessment registration/deregistration | Reg.: course registration, dereg: cancel course registration | 
| Repeat examination | no repeat examination | 
| Scale | 1-6 0,5 | 
| Repeated registration | as often as necessary | 
| Responsible faculty | Faculty of Science, studiendekanat-philnat@unibas.ch | 
| Offered by | Fachbereich Informatik |