Back to selection
Semester | spring semester 2022 |
Further events belonging to these CP |
17165-01 (Lecture) 17165-02 (Practical course) |
Course frequency | Every spring sem. |
Lecturers | Volker Roth (volker.roth@unibas.ch, Assessor) |
Content | Probabilities Generative models for discrete data Classification & regression: Frequentist & Bayesian approaches, model selection, sparse models Neural networks: Feed-forward & recurrent topologies, encoder-decoder models, interpretability in deep learning models Elements of statistical learning theory Support Vector Machines and kernels, Gaussian processes Mixture models, mixtures of experts Linear latent variable models: Factor analysis, PCA, CCA Non-linear latent variable models: Variational autoencoders, deep information bottlenecks |
Learning objectives | Understand the theoretical foundations of Machine Learning Understand and apply practical learning algorithms: linear and generalized linear models for regression and classification, neural networks, Support Vector machines & kernel methods, mixture models & clustering. Program in Python. PyTorch & Tensorflow |
Bibliography | https://mitpress.mit.edu/books/machine-learning-1 https://www.deeplearningbook.org/ |
Comments | Target group: Master students |
Weblink | Course website |
Admission requirements | Basic knowledge and skills regarding pattern recognition, numerical analysis, and statistics |
Course application | Übung: https://courses.cs.unibas.ch |
Language of instruction | English |
Use of digital media | Online, mandatory |
Course auditors welcome |
Interval | Weekday | Time | Room |
---|---|---|---|
wöchentlich | Tuesday | 10.15-12.00 | Physik, Neuer Hörsaal 1, Foyer EG |
wöchentlich | Wednesday | 14.15-16.00 | Kollegienhaus, Hörsaal 118 |
Date | Time | Room |
---|---|---|
Tuesday 22.02.2022 | 10.15-12.00 | Physik, Grosser Hörsaal, 1.03 |
Wednesday 23.02.2022 | 14.15-16.00 | Biozentrum, Seminarraum U1.195 |
Tuesday 01.03.2022 | 10.15-12.00 | Physik, Neuer Hörsaal 1, Foyer EG |
Wednesday 02.03.2022 | 14.15-16.00 | Kollegienhaus, Hörsaal 118 |
Tuesday 08.03.2022 | 10.15-12.00 | Fasnachtsferien |
Wednesday 09.03.2022 | 14.15-16.00 | Fasnachtsferien |
Tuesday 15.03.2022 | 10.15-12.00 | Physik, Neuer Hörsaal 1, Foyer EG |
Wednesday 16.03.2022 | 14.15-16.00 | Kollegienhaus, Hörsaal 118 |
Tuesday 22.03.2022 | 10.15-12.00 | Physik, Neuer Hörsaal 1, Foyer EG |
Wednesday 23.03.2022 | 14.15-16.00 | Kollegienhaus, Hörsaal 118 |
Tuesday 29.03.2022 | 10.15-12.00 | Physik, Grosser Hörsaal, 1.03 |
Wednesday 30.03.2022 | 14.15-16.00 | Kollegienhaus, Hörsaal 118 |
Tuesday 05.04.2022 | 10.15-12.00 | Physik, Neuer Hörsaal 1, Foyer EG |
Wednesday 06.04.2022 | 14.15-16.00 | Kollegienhaus, Hörsaal 118 |
Tuesday 12.04.2022 | 10.15-12.00 | Physik, Neuer Hörsaal 1, Foyer EG |
Wednesday 13.04.2022 | 14.15-16.00 | Kollegienhaus, Hörsaal 118 |
Tuesday 19.04.2022 | 10.15-12.00 | Physik, Neuer Hörsaal 1, Foyer EG |
Wednesday 20.04.2022 | 14.15-16.00 | Kollegienhaus, Hörsaal 118 |
Tuesday 26.04.2022 | 10.15-12.00 | Physik, Neuer Hörsaal 1, Foyer EG |
Wednesday 27.04.2022 | 14.15-16.00 | Kollegienhaus, Hörsaal 118 |
Tuesday 03.05.2022 | 10.15-12.00 | Physik, Neuer Hörsaal 1, Foyer EG |
Wednesday 04.05.2022 | 14.15-16.00 | Kollegienhaus, Hörsaal 118 |
Tuesday 10.05.2022 | 10.15-12.00 | Physik, Neuer Hörsaal 1, Foyer EG |
Wednesday 11.05.2022 | 14.15-16.00 | Kollegienhaus, Hörsaal 118 |
Tuesday 17.05.2022 | 10.15-12.00 | Physik, Neuer Hörsaal 1, Foyer EG |
Wednesday 18.05.2022 | 14.15-16.00 | Kollegienhaus, Hörsaal 118 |
Tuesday 24.05.2022 | 10.15-12.00 | Physik, Neuer Hörsaal 1, Foyer EG |
Wednesday 25.05.2022 | 14.15-16.00 | Kollegienhaus, Hörsaal 118 |
Tuesday 31.05.2022 | 10.15-12.00 | Physik, Neuer Hörsaal 1, Foyer EG |
Wednesday 01.06.2022 | 14.15-16.00 | Kollegienhaus, Hörsaal 118 |
Modules |
Doctorate Computer Science: Recommendations (PhD subject: Computer Science) General Electives in Business and Economics: Additional Courses (Master's Studies: Business and Economics) Kernfächer und Seminar (Master's Studies: Computational Biology and Bioinformatics) Modul: Concepts of Machine Intelligence (Master's degree subject: Computer Science) Module: Applications of Distributed Systems (Master's Studies: Computer Science) Module: Concepts of Machine Intelligence (Master's Studies: Computer Science) Module: Interdisciplinary and Transfer of Knowledge (Master's Studies: Actuarial Science) |
Assessment format | continuous assessment |
Assessment details | Oral exam Expected Date: 22/23/24 June 2022, Spiegelgasse 5, room 05.001. Admission to the examination: handing in "reasonable" solutions to >70% of the exercises |
Assessment registration/deregistration | Reg.: course registration, dereg: cancel course registration |
Repeat examination | no repeat examination |
Scale | 1-6 0,5 |
Repeated registration | as often as necessary |
Responsible faculty | Faculty of Science, studiendekanat-philnat@unibas.ch |
Offered by | Fachbereich Informatik |