Add to watchlist
Back to selection

 

45400-01 - Lecture: Planning and Optimization (8 CP)

Semester fall semester 2022
Further events belonging to these CP 45400-01 (Lecture)
45400-02 (Practical course)
Course frequency Every fall sem.
Lecturers Malte Helmert (malte.helmert@unibas.ch, Assessor)
Gabriele Röger (gabriele.roeger@unibas.ch)
Content The course provides an introduction to the theory and algorithms for automated planning, with an emphasis on classical and probabilistic planning. Automated planning is concerned with determining a sequence of actions or policy that transforms a given initial state into a desirable state in a very large state space. Topics covered include: planning formalisms and normal forms; progression and regression; computational complexity of planning; heuristics for classical planning based on delete relaxation, abstraction, landmarks, critical paths and network flows; formal relationships between heuristics; probabilistic planning via dynamic programming, heuristic search and Monte-Carlo tree search.
Learning objectives The participants get to know the theoretical and algorithmic foundations of action planning as well as their practical implementation. They understand the fundamental concepts underlying modern planning algorithms as well as the theoretical relationships that connect them. They are equipped to understand research papers and conduct projects in this area.
Bibliography There is no textbook for the course. The course slides will be made available to the participants, and additional research papers complementing the course materials will be uploaded to the course webpage during the semester.
Weblink course web page

 

Admission requirements Good knowledge in the foundations and core areas of computer science are assumed, in particular algorithms and data structures, complexity theory, mathematical logic and programming.

Good knowledge of the contents of the courses "Theory of Computer Science" (10948) and "Foundations of Artificial Intelligence" (13548) is assumed, in particular the topics of propositional logic and NP-completeness from the theory course and the topic of state-space search from the AI course. Students who have not previously passed the prerequisite courses are strongly advised to learn the necessary material in self-study prior to the beginning of this course. If you are interested in participating in this course but do not yet have sufficient knowledge of these topics, we strongly encourage you to contact the lecturers prior to the semester to discuss a possible self-study plan.
Course application Registration via https://services.unibas.ch.
Language of instruction English
Use of digital media Online, mandatory
Course auditors welcome

 

Interval Weekday Time Room
wöchentlich Monday 14.15-16.00 Spiegelgasse 1, Seminarraum 00.003
wöchentlich Wednesday 14.15-16.00 Spiegelgasse 1, Seminarraum 00.003

Dates

Date Time Room
Wednesday 21.09.2022 14.15-16.00 Spiegelgasse 1, Seminarraum 00.003
Monday 26.09.2022 14.15-16.00 Spiegelgasse 1, Seminarraum 00.003
Wednesday 28.09.2022 14.15-16.00 Spiegelgasse 1, Seminarraum 00.003
Monday 03.10.2022 14.15-16.00 Spiegelgasse 1, Seminarraum 00.003
Wednesday 05.10.2022 14.15-16.00 Spiegelgasse 1, Seminarraum 00.003
Monday 10.10.2022 14.15-16.00 Spiegelgasse 1, Seminarraum 00.003
Wednesday 12.10.2022 14.15-16.00 Spiegelgasse 1, Seminarraum 00.003
Monday 17.10.2022 14.15-16.00 Spiegelgasse 1, Seminarraum 00.003
Wednesday 19.10.2022 14.15-16.00 Spiegelgasse 1, Seminarraum 00.003
Monday 24.10.2022 14.15-16.00 Spiegelgasse 1, Seminarraum 00.003
Wednesday 26.10.2022 14.15-16.00 Spiegelgasse 1, Seminarraum 00.003
Monday 31.10.2022 14.15-16.00 Spiegelgasse 1, Seminarraum 00.003
Wednesday 02.11.2022 14.15-16.00 Spiegelgasse 1, Seminarraum 00.003
Monday 07.11.2022 14.15-16.00 Spiegelgasse 1, Seminarraum 00.003
Wednesday 09.11.2022 14.15-16.00 Spiegelgasse 1, Seminarraum 00.003
Monday 14.11.2022 14.15-16.00 Spiegelgasse 1, Seminarraum 00.003
Wednesday 16.11.2022 14.15-16.00 Spiegelgasse 1, Seminarraum 00.003
Monday 21.11.2022 14.15-16.00 Spiegelgasse 1, Seminarraum 00.003
Wednesday 23.11.2022 14.15-16.00 Spiegelgasse 1, Seminarraum 00.003
Monday 28.11.2022 14.15-16.00 Spiegelgasse 1, Seminarraum 00.003
Wednesday 30.11.2022 14.15-16.00 Spiegelgasse 1, Seminarraum 00.003
Monday 05.12.2022 14.15-16.00 Spiegelgasse 1, Seminarraum 00.003
Wednesday 07.12.2022 14.15-16.00 Spiegelgasse 1, Seminarraum 00.003
Monday 12.12.2022 14.15-16.00 Spiegelgasse 1, Seminarraum 00.003
Wednesday 14.12.2022 14.15-16.00 Spiegelgasse 1, Seminarraum 00.003
Monday 19.12.2022 14.15-16.00 Spiegelgasse 1, Seminarraum 00.003
Wednesday 21.12.2022 14.15-16.00 Spiegelgasse 1, Seminarraum 00.003
Modules Doctorate Computer Science: Recommendations (PhD subject: Computer Science)
Modul: Concepts of Machine Intelligence (Master's degree subject: Computer Science)
Module: Applications of Distributed Systems (Master's Studies: Computer Science)
Module: Concepts of Machine Intelligence (Master's Studies: Computer Science)
Module: Electives in Data Science (Master's Studies: Data Science)
Module: Methods of Machine Intelligence (Master's Studies: Computer Science)
Assessment format continuous assessment
Assessment details Marked homework exercises will be handed out in order to support and assess the learning progress. To qualify for the written examination, students must obtain at least 50% of the total marks from the exercises. Exercise marks do not contribute to the final grade for the course, which is exclusively based on the written examination.

Exam date, time and location: Wednesday, 25 January 2023, 2-4 p.m., room 00.003, Spiegelgasse 1.
Assessment registration/deregistration Reg.: course registration, dereg: cancel course registration
Repeat examination no repeat examination
Scale 1-6 0,5
Repeated registration as often as necessary
Responsible faculty Faculty of Science, studiendekanat-philnat@unibas.ch
Offered by Fachbereich Informatik

Back to selection