Back to selection
Semester | spring semester 2023 |
Further events belonging to these CP |
17165-01 (Lecture) 17165-02 (Practical course) |
Course frequency | Every spring sem. |
Lecturers | Volker Roth (volker.roth@unibas.ch, Assessor) |
Content | Probabilities Generative models for discrete data Classification & regression: Frequentist & Bayesian approaches, model selection, sparse models Neural networks: Feed-forward & recurrent topologies, encoder-decoder models, interpretability in deep learning models Elements of statistical learning theory Support Vector Machines and kernels, Gaussian processes Mixture models, mixtures of experts Linear latent variable models: Factor analysis, PCA, CCA Non-linear latent variable models: Variational autoencoders, deep information bottlenecks |
Learning objectives | Understand the theoretical foundations of Machine Learning Understand and apply practical learning algorithms: linear and generalized linear models for regression and classification, neural networks, Support Vector machines & kernel methods, mixture models & clustering. Program in Python. PyTorch & Tensorflow |
Bibliography | https://mitpress.mit.edu/books/machine-learning-1 https://www.deeplearningbook.org/ |
Comments | Target group: Master students |
Weblink | Course website |
Admission requirements | Basic knowledge and skills regarding pattern recognition, numerical analysis, and statistics |
Course application | Übung: https://courses.cs.unibas.ch |
Language of instruction | English |
Use of digital media | Online, mandatory |
Course auditors welcome |
Interval | Weekday | Time | Room |
---|---|---|---|
wöchentlich | Tuesday | 10.15-12.00 | Physik, Neuer Hörsaal 1, Foyer EG |
wöchentlich | Wednesday | 14.15-16.00 | Alte Universität, Hörsaal -101 |
Date | Time | Room |
---|---|---|
Tuesday 21.02.2023 | 10.15-12.00 | Physik, Neuer Hörsaal 1, Foyer EG |
Wednesday 22.02.2023 | 14.15-16.00 | Alte Universität, Hörsaal -101 |
Tuesday 28.02.2023 | 10.15-12.00 | Fasnachstferien |
Wednesday 01.03.2023 | 14.15-16.00 | Fasnachstferien |
Tuesday 07.03.2023 | 10.15-12.00 | Physik, Neuer Hörsaal 1, Foyer EG |
Wednesday 08.03.2023 | 14.15-16.00 | Alte Universität, Hörsaal -101 |
Tuesday 14.03.2023 | 10.15-12.00 | Physik, Neuer Hörsaal 1, Foyer EG |
Wednesday 15.03.2023 | 14.15-16.00 | Alte Universität, Hörsaal -101 |
Tuesday 21.03.2023 | 10.15-12.00 | Physik, Neuer Hörsaal 1, Foyer EG |
Wednesday 22.03.2023 | 14.15-16.00 | Alte Universität, Hörsaal -101 |
Tuesday 28.03.2023 | 10.15-12.00 | Physik, Neuer Hörsaal 1, Foyer EG |
Wednesday 29.03.2023 | 14.15-16.00 | Alte Universität, Hörsaal -101 |
Tuesday 04.04.2023 | 10.15-12.00 | Physik, Neuer Hörsaal 1, Foyer EG |
Wednesday 05.04.2023 | 14.15-16.00 | Alte Universität, Hörsaal -101 |
Tuesday 11.04.2023 | 10.15-12.00 | Physik, Neuer Hörsaal 1, Foyer EG |
Wednesday 12.04.2023 | 14.15-16.00 | Alte Universität, Hörsaal -101 |
Tuesday 18.04.2023 | 10.15-12.00 | Physik, Neuer Hörsaal 1, Foyer EG |
Wednesday 19.04.2023 | 14.15-16.00 | Alte Universität, Hörsaal -101 |
Tuesday 25.04.2023 | 10.15-12.00 | Physik, Neuer Hörsaal 1, Foyer EG |
Wednesday 26.04.2023 | 14.15-16.00 | Alte Universität, Hörsaal -101 |
Tuesday 02.05.2023 | 10.15-12.00 | Physik, Neuer Hörsaal 1, Foyer EG |
Wednesday 03.05.2023 | 14.15-16.00 | Alte Universität, Hörsaal -101 |
Tuesday 09.05.2023 | 10.15-12.00 | Physik, Neuer Hörsaal 1, Foyer EG |
Wednesday 10.05.2023 | 14.15-16.00 | Alte Universität, Hörsaal -101 |
Tuesday 16.05.2023 | 10.15-12.00 | Physik, Neuer Hörsaal 1, Foyer EG |
Wednesday 17.05.2023 | 14.15-16.00 | Alte Universität, Hörsaal -101 |
Tuesday 23.05.2023 | 10.15-12.00 | Physik, Neuer Hörsaal 1, Foyer EG |
Wednesday 24.05.2023 | 14.15-16.00 | Alte Universität, Hörsaal -101 |
Tuesday 30.05.2023 | 10.15-12.00 | Physik, Neuer Hörsaal 1, Foyer EG |
Wednesday 31.05.2023 | 14.15-16.00 | Alte Universität, Hörsaal -101 |
Modules |
Doctorate Computer Science: Recommendations (PhD subject: Computer Science) General Electives in Business and Economics: Additional Courses (Master's Studies: Business and Economics) Kernfächer und Seminar (Master's Studies: Computational Biology and Bioinformatics) Modul: Concepts of Machine Intelligence (Master's degree subject: Computer Science) Module: Applications of Distributed Systems (Master's Studies: Computer Science) Module: Concepts of Machine Intelligence (Master's Studies: Computer Science) Module: Interdisciplinary and Transfer of Knowledge (Master's Studies: Actuarial Science) |
Assessment format | continuous assessment |
Assessment details | Oral exam Expected Date: 21/22/23 June 2023, Spiegelgasse 1, room 00.003. Admission to the examination: handing in "reasonable" solutions to >70% of the exercises |
Assessment registration/deregistration | Reg.: course registration, dereg: cancel course registration |
Repeat examination | no repeat examination |
Scale | 1-6 0,5 |
Repeated registration | as often as necessary |
Responsible faculty | Faculty of Science, studiendekanat-philnat@unibas.ch |
Offered by | Fachbereich Informatik |