Add to watchlist
Back to selection

 

66937-01 - Lecture with practical courses: Foundations of Deep Learning (6 CP)

Semester fall semester 2025
Course frequency Irregular
Lecturers Aurelien Lucchi (aurelien.lucchi@unibas.ch, Assessor)
Content The class focuses on the theoretical concepts behind Deep learning. We will discuss the following concepts:

General introduction to linear networks, activations, etc
Approximation Theory
Complexity Theory
Network Architectures
Optimization
Optimization Landscape of Neural Networks
Neural Tangent Kernel
Regularization
Generalization bounds
Adversarial examples
Learning objectives The main goal is to understand the theoretical foundations of Deep Learning.
This includes the following important concepts:
- Universal approximation: can a neural network approximate any arbitrary function?
- Optimization: how do we optimize the parameters of a neural network? what theoretical guarantees do we have about finding a good solution?
- Generalization: under what conditions does the solution of a neural network generalizes to unseen data?
- Adversarial robustness: how robust is a neural network to adversarial attacks?
Comments Exercise sessions will start the second week of the semester.

 

Admission requirements - Machine Learning (classification, regression, kernels, etc)
- Linear algebra
- Calculus, Basic concepts in topology
- Probability theory (random variable, expectation, density, etc)
- Some non-mandatory exercises will require coding in python (reasonable coding skills in another programming language should be sufficient to learn python)

Note that a significant part of the class focuses on understanding theoretical aspects, we will thus be covering proofs that require a good knowledge of the mathematical concepts discussed above.
Language of instruction English
Use of digital media No specific media used

 

Interval Weekday Time Room
wöchentlich Wednesday 12.15-14.00 Spiegelgasse 5, Seminarraum 05.002
wöchentlich Thursday 16.15-18.00 Kollegienhaus, Hörsaal 115

Dates

Date Time Room
Wednesday 17.09.2025 12.15-14.00 Spiegelgasse 5, Seminarraum 05.002
Thursday 18.09.2025 16.15-18.00 Kollegienhaus, Hörsaal 115
Wednesday 24.09.2025 12.15-14.00 Spiegelgasse 5, Seminarraum 05.002
Thursday 25.09.2025 16.15-18.00 Kollegienhaus, Hörsaal 115
Wednesday 01.10.2025 12.15-14.00 Spiegelgasse 5, Seminarraum 05.002
Thursday 02.10.2025 16.15-18.00 Kollegienhaus, Hörsaal 115
Wednesday 08.10.2025 12.15-14.00 Spiegelgasse 5, Seminarraum 05.002
Thursday 09.10.2025 16.15-18.00 Kollegienhaus, Hörsaal 115
Wednesday 15.10.2025 12.15-14.00 Spiegelgasse 5, Seminarraum 05.002
Thursday 16.10.2025 16.15-18.00 Kollegienhaus, Hörsaal 115
Wednesday 22.10.2025 12.15-14.00 Spiegelgasse 5, Seminarraum 05.002
Thursday 23.10.2025 16.15-18.00 Kollegienhaus, Hörsaal 115
Wednesday 29.10.2025 12.15-14.00 Spiegelgasse 5, Seminarraum 05.002
Thursday 30.10.2025 16.15-18.00 Kollegienhaus, Hörsaal 115
Wednesday 05.11.2025 12.15-14.00 Spiegelgasse 5, Seminarraum 05.001
Thursday 06.11.2025 16.15-18.00 Kollegienhaus, Hörsaal 115
Wednesday 12.11.2025 12.15-14.00 Spiegelgasse 5, Seminarraum 05.002
Thursday 13.11.2025 16.15-18.00 Kollegienhaus, Hörsaal 115
Wednesday 19.11.2025 12.15-14.00 Spiegelgasse 5, Seminarraum 05.002
Thursday 20.11.2025 16.15-18.00 Kollegienhaus, Hörsaal 115
Wednesday 26.11.2025 12.15-14.00 Spiegelgasse 5, Seminarraum 05.002
Thursday 27.11.2025 16.15-18.00 Kollegienhaus, Hörsaal 115
Wednesday 03.12.2025 12.15-14.00 Spiegelgasse 5, Seminarraum 05.002
Thursday 04.12.2025 16.15-18.00 Kollegienhaus, Hörsaal 115
Wednesday 10.12.2025 12.15-14.00 Spiegelgasse 5, Seminarraum 05.002
Modules Doctorate Computer Science: Recommendations (PhD subject: Computer Science)
Module: Applications of Distributed Systems (Master's Studies: Computer Science)
Module: Applications of Machine Intelligence (Master's Studies: Computer Science)
Module: Concepts of Machine Intelligence (Master's Studies: Computer Science)
Module: Electives in Data Science (Master's Studies: Data Science)
Module: Machine Learning Foundations (Master's Studies: Data Science)
Module: Methods of Machine Intelligence (Master's Studies: Computer Science)
Assessment format continuous assessment
Assessment details Continuous assessment

Note the following split:
15% continuous assesment (short exercises and Q&As given in class)
25% mid-term exam (written). Date: during exercise session on Thursday, 30.10.2025
25% project (writeup and presentation)
35% final exam (written)

Expected date final exam: Thursday, February 5, 2026, 10-12 a.m., Spiegelgasse 5, room 05.002.

Assessment registration/deregistration Reg.: course registration, dereg: cancel course registration
Repeat examination no repeat examination
Scale 1-6 0,5
Repeated registration as often as necessary
Responsible faculty Faculty of Science, studiendekanat-philnat@unibas.ch
Offered by Fachbereich Informatik

Back to selection