Add to watchlist
Back to selection

 

17165-01 - Lecture: Machine Learning (8 CP)

Semester spring semester 2026
Further events belonging to these CP 17165-01 (Lecture)
17165-02 (Practical course)
Course frequency Every spring sem.
Lecturers Volker Roth (volker.roth@unibas.ch, Assessor)
Content Probabilities
Generative models for discrete data
Classification & regression: Frequentist & Bayesian approaches, model selection, sparse models
Neural networks: Feed-forward & recurrent topologies, encoder-decoder models, interpretability in deep learning models
Elements of statistical learning theory
Support Vector Machines and kernels, Gaussian processes
Mixture models, mixtures of experts
Linear latent variable models: Factor analysis, PCA, CCA
Non-linear latent variable models: Variational autoencoders, deep information bottlenecks, sequence-to-sequence models, large language models
Learning objectives Understand the theoretical foundations of Machine Learning

Understand and apply practical learning algorithms: (generalized) linear models for regression and classification, Gaussian processes, elements of statistical learning theory, mixture models, clustering, (deep) neural networks, (traditional and large) language models.

Program in Python. PyTorch & Tensorflow
Bibliography https://mitpress.mit.edu/books/machine-learning-1
https://www.deeplearningbook.org/
Comments Target group: Master students
Weblink Course website

 

Admission requirements Basic knowledge and skills regarding pattern recognition, numerical analysis, and statistics
Course application Übung: https://courses.cs.unibas.ch
Language of instruction English
Use of digital media Online, optional
Course auditors welcome

 

Interval Weekday Time Room
wöchentlich Tuesday 10.15-12.00 Physik, Neuer Hörsaal 1, Foyer EG
wöchentlich Wednesday 14.15-16.00 Alte Universität, Hörsaal -101

Dates

Date Time Room
Tuesday 17.02.2026 10.15-12.00 Physik, Neuer Hörsaal 1, Foyer EG
Wednesday 18.02.2026 14.15-16.00 Alte Universität, Hörsaal -101
Tuesday 24.02.2026 10.15-12.00 Fasnachtsferien
Wednesday 25.02.2026 14.15-16.00 Fasnachtsferien
Tuesday 03.03.2026 10.15-12.00 Physik, Neuer Hörsaal 1, Foyer EG
Wednesday 04.03.2026 14.15-16.00 Alte Universität, Hörsaal -101
Tuesday 10.03.2026 10.15-12.00 Physik, Neuer Hörsaal 1, Foyer EG
Wednesday 11.03.2026 14.15-16.00 Alte Universität, Hörsaal -101
Tuesday 17.03.2026 10.15-12.00 Physik, Neuer Hörsaal 1, Foyer EG
Wednesday 18.03.2026 14.15-16.00 Alte Universität, Hörsaal -101
Tuesday 24.03.2026 10.15-12.00 Physik, Neuer Hörsaal 1, Foyer EG
Wednesday 25.03.2026 14.15-16.00 Alte Universität, Hörsaal -101
Tuesday 31.03.2026 10.15-12.00 Physik, Neuer Hörsaal 1, Foyer EG
Wednesday 01.04.2026 14.15-16.00 Alte Universität, Hörsaal -101
Tuesday 07.04.2026 10.15-12.00 Physik, Neuer Hörsaal 1, Foyer EG
Wednesday 08.04.2026 14.15-16.00 Alte Universität, Hörsaal -101
Tuesday 14.04.2026 10.15-12.00 Physik, Neuer Hörsaal 1, Foyer EG
Wednesday 15.04.2026 14.15-16.00 Alte Universität, Hörsaal -101
Tuesday 21.04.2026 10.15-12.00 Physik, Neuer Hörsaal 1, Foyer EG
Wednesday 22.04.2026 14.15-16.00 Alte Universität, Hörsaal -101
Tuesday 28.04.2026 10.15-12.00 Physik, Neuer Hörsaal 1, Foyer EG
Wednesday 29.04.2026 14.15-16.00 Alte Universität, Hörsaal -101
Tuesday 05.05.2026 10.15-12.00 Physik, Neuer Hörsaal 1, Foyer EG
Wednesday 06.05.2026 14.15-16.00 Alte Universität, Hörsaal -101
Tuesday 12.05.2026 10.15-12.00 Physik, Neuer Hörsaal 1, Foyer EG
Wednesday 13.05.2026 14.15-16.00 Alte Universität, Hörsaal -101
Tuesday 19.05.2026 10.15-12.00 Physik, Neuer Hörsaal 1, Foyer EG
Wednesday 20.05.2026 14.15-16.00 Alte Universität, Hörsaal -101
Tuesday 26.05.2026 10.15-12.00 Physik, Neuer Hörsaal 1, Foyer EG
Wednesday 27.05.2026 14.15-16.00 Alte Universität, Hörsaal -101
Modules Doctorate Computer Science: Recommendations (PhD subject: Computer Science)
General Electives in Business and Economics: Additional Courses (Master's Studies: Business and Economics)
Kernfächer und Seminar (Master's Studies: Computational Biology and Bioinformatics)
Module: Applications of Distributed Systems (Master's Studies: Computer Science)
Module: Concepts of Machine Intelligence (Master's Studies: Computer Science)
Module: Concepts of Machine Intelligence (Master's degree subject: Computer Science)
Module: Interdisciplinary and Transfer of Knowledge (Master's Studies: Actuarial Science)
Module: Machine Learning Foundations (Master's Studies: Data Science)
Module: Specific Electives in Data Science and Computational Economics (Master's Studies: Business and Economics)
Specialization Module: Areas of Specialization in International and/or Monetary Economics (Master's Studies: International and Monetary Economics)
Assessment format continuous assessment
Assessment details Written exam
Expected Date: TBA
Admission to the examination: handing in "reasonable" solutions to >70% of the exercises
Composition of the grade: examination result
Assessment registration/deregistration Reg.: course registration, dereg: cancel course registration
Repeat examination no repeat examination
Scale 1-6 0,5
Repeated registration as often as necessary
Responsible faculty Faculty of Science, studiendekanat-philnat@unibas.ch
Offered by Fachbereich Informatik

Back to selection