Add to watchlist
Back to selection

 

10907-01 - Lecture: Pattern Recognition (8 CP)

Semester fall semester 2023
Further events belonging to these CP 10907-01 (Lecture)
10907-02 (Practical course)
10907-03 (Practical course)
Course frequency Every fall sem.
Lecturers Ivan Dokmanić (ivan.dokmanic@unibas.ch, Assessor)
Content Die Vorlesung führt ein in das Design von Mustererkennungssystemen. Präsentiert werden Klassifizierungsmerkmale sowie Klassifizierungsverfahren (z.B. Bayes Classification, Neural Network, Support Vector Machine oder AdaBoost) und deren Funktionsweise sowie der Einsatz und die Evaluation dieser Verfahren. Während der Übungen lernen Sie, praxisnahe Klassifizierungsprobleme zu lösen.
Learning objectives - Bei der Datenerfassung geeignete Klassifizierungsmerkmale auswählen und nutzen,
- Klassifizierer beschreiben, einsetzen, trainieren und evaluieren,
- eigene kleine Erkennungssysteme implementieren, die geschriebene Zahlen erkennen oder Gesichter unterscheiden können;
Bibliography S. Theodoridis, K. Koutroumbas, Pattern Recognition, 2nd (3rd, 4th) ed., Academic Press, 2003, ISBN: 0126858756. (2006, ISBN: 0123695317; 2008, ISBN: 1597492728)
C. Bishop, Pattern Recognition and Machine Learning, 2006, Springer Verlag, ISBN: 0387310738

Ergänzend:
R. Duda, P. Hart, D. Stork, Pattern Classification, 2nd ed., Wiley-Interscience, 2000, ISBN: 0471056693.

Leihexemplare sind in der Uni Bibliothek in begrenzter Zahl vorhanden
Comments
Weblink Link zur Kurswebseite

 

Admission requirements Grundlagen in Mathematik und Statistik. Basiskenntnisse der Programmierung. Kenntnisse in Python sind wünschenswert.
Language of instruction English
Use of digital media Online, mandatory

 

Interval Weekday Time Room
wöchentlich Tuesday 08.15-10.00 Kollegienhaus, Hörsaal 118
wöchentlich Friday 10.15-12.00 Kollegienhaus, Hörsaal 115

Dates

Date Time Room
Tuesday 19.09.2023 08.15-10.00 Kollegienhaus, Hörsaal 118
Friday 22.09.2023 10.15-12.00 Kollegienhaus, Hörsaal 115
Tuesday 26.09.2023 08.15-10.00 Kollegienhaus, Hörsaal 118
Friday 29.09.2023 10.15-12.00 Kollegienhaus, Hörsaal 115
Tuesday 03.10.2023 08.15-10.00 Kollegienhaus, Hörsaal 118
Friday 06.10.2023 10.15-12.00 Kollegienhaus, Hörsaal 115
Tuesday 10.10.2023 08.15-10.00 Kollegienhaus, Hörsaal 118
Friday 13.10.2023 10.15-12.00 Kollegienhaus, Hörsaal 115
Tuesday 17.10.2023 08.15-10.00 Kollegienhaus, Hörsaal 118
Friday 20.10.2023 10.15-12.00 Kollegienhaus, Hörsaal 115
Tuesday 24.10.2023 08.15-10.00 Kollegienhaus, Hörsaal 118
Friday 27.10.2023 10.15-12.00 Kollegienhaus, Hörsaal 115
Tuesday 31.10.2023 08.15-10.00 Kollegienhaus, Hörsaal 118
Friday 03.11.2023 10.15-12.00 Kollegienhaus, Hörsaal 115
Tuesday 07.11.2023 08.15-10.00 Kollegienhaus, Hörsaal 118
Friday 10.11.2023 10.15-12.00 Kollegienhaus, Hörsaal 115
Tuesday 14.11.2023 08.15-10.00 Kollegienhaus, Hörsaal 118
Friday 17.11.2023 10.15-12.00 Kollegienhaus, Hörsaal 115
Tuesday 21.11.2023 08.15-10.00 Kollegienhaus, Hörsaal 118
Friday 24.11.2023 10.15-12.00 Dies Academicus
Tuesday 28.11.2023 08.15-10.00 Kollegienhaus, Hörsaal 118
Friday 01.12.2023 10.15-12.00 Kollegienhaus, Hörsaal 115
Tuesday 05.12.2023 08.15-10.00 Kollegienhaus, Hörsaal 118
Friday 08.12.2023 10.15-12.00 Kollegienhaus, Hörsaal 120
Tuesday 12.12.2023 08.15-10.00 Kollegienhaus, Hörsaal 118
Friday 15.12.2023 10.15-12.00 Kollegienhaus, Hörsaal 115
Tuesday 19.12.2023 08.15-10.00 Kollegienhaus, Hörsaal 118
Friday 22.12.2023 10.15-12.00 Kollegienhaus, Hörsaal 115
Friday 26.01.2024 14.00-16.00 Kollegienhaus, Hörsaal 102
Modules Modul: Applications and Related Topics (Bachelor's degree subject: Computer Science)
Modul: Computational Methods (Bachelor's Studies: Computational Sciences)
Modul: Computational Methods (Bachelor's Studies: Computational Sciences)
Modul: Computational Methods (Bachelor's Studies: Computational Sciences)
Modul: Computational Methods (Bachelor's Studies: Computational Sciences)
Modul: Computational Methods (Bachelor's Studies: Computational Sciences)
Module: Computational Sciences II (Bachelor's Studies: Computational Sciences (Start of studies before 01.08.2023))
Module: Interdisciplinary and Transfer of Knowledge (Master's Studies: Actuarial Science)
Module: Machine Intelligence (Bachelor's Studies: Computer Science)
Wahlbereich Grundstudium Bachelor Physik: Empfehlungen (Bachelor's Studies: Physics)
Wahlbereich Master Physik: Empfehlungen (Master's Studies: Physics)
Assessment format continuous assessment
Assessment details Die erfolgreiche Teilnahme an den Übungen ist Voraussetzung, um zur schriftlichen Prüfung zugelassen zu werden. Details zu den Übungen und zur schriftlichen Prüfung werden in der Vorlesung bekannt gegeben.
Voraussichtlicher Prüfungstermin: Freitag, 26.01.2024, 14-16 Uhr.
Assessment registration/deregistration Reg.: course registration, dereg: cancel course registration
Repeat examination no repeat examination
Scale 1-6 0,5
Repeated registration as often as necessary
Responsible faculty Faculty of Science, studiendekanat-philnat@unibas.ch
Offered by Fachbereich Informatik

Back to selection