Back to selection
Semester | fall semester 2024 |
Course frequency | Every fall sem. |
Lecturers |
Catherine Blatter (catherine.blatter@unibas.ch)
Michael Ketzer (michael.ketzer@unibas.ch) Michael Simon (m.simon@unibas.ch, Assessor) Diana Trutschel (diana.trutschel@unibas.ch) |
Content | Statistics is ubiquitous in medical and nursing research. Clinicians and nurse researchers need to understand basic statistical concepts, be able to interpret statistical results and conduct basic statistical analyses themselves. The course "Advanced Statistics: Multilevel analysis" is the last part of a series of three courses to use the statistical programming language R to learn statistics. The course will provide students the basis to understand and apply advanced statistical techniques such as linear and generalized linear mixed model in the context of nursing research. With the successful completion of the course students will be able to: 1. Understand the conceptual implications of variables on different levels (i.e. micro, meso macro level) 2. Analyze intraclass correlations in the context of LMM and GLMM 3. Analyse random intercept models including variables on different levels 4. Write statistical reports about quantitative analyses conducted in the programming language R 5. Apply principles of reproducible research using R Markdown |
Learning objectives | • A lecture-seminar-exercise format will be used, with 30-60 minute lectures, 60 minute seminars and 60 minute exercises. • Introduction to more advanced statistical approaches such as multilevel regression and intraclass correlation • Practical training in R programming and analytical techniques. • Analysis of a dataset using R and writing a report using R Markdown |
Bibliography | Facultative literature: - Gelman, A., Hill, J., & Vehtari, A. (2020). Regression and Other Stories. Cambridge: Cambridge University Press. - Snijders, T. A. B., and Bosker, Roel J. (2012). Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modeling. London: Sage Publishers. |
Comments | Sessions will be made available through Panopto. |
Weblink | ADAM Login |
Admission requirements | Aufnahme in den Studiengang Pflegewissenschaft Erfolgreicher Abschluss der LV Statistics I & II PhD-Studierende können nur nach Zustimmung der Kursleitung teilnehmen und nur nach erfolgreicher Teilnahme an Statistics I & II |
Course application | in Services belegen |
Language of instruction | English |
Use of digital media | Online, mandatory |
Interval | Weekday | Time | Room |
---|---|---|---|
wöchentlich | Tuesday | 13.15-16.00 | Kollegienhaus, Hörsaal 119 |
Date | Time | Room |
---|---|---|
Tuesday 17.09.2024 | 13.15-16.00 | Kollegienhaus, Hörsaal 119 |
Tuesday 24.09.2024 | 13.15-16.00 | Kollegienhaus, Hörsaal 119 |
Tuesday 01.10.2024 | 13.15-16.00 | Kollegienhaus, Hörsaal 119 |
Tuesday 08.10.2024 | 13.15-16.00 | Kollegienhaus, Hörsaal 119 |
Tuesday 15.10.2024 | 13.15-16.00 | Kollegienhaus, Hörsaal 119 |
Tuesday 22.10.2024 | 13.15-16.00 | Kollegienhaus, Hörsaal 119 |
Tuesday 05.11.2024 | 13.15-16.00 | Kollegienhaus, Hörsaal 119 |
Tuesday 19.11.2024 | 13.15-16.00 | Kollegienhaus, Hörsaal 119 |
Tuesday 10.12.2024 | 12.15-18.00 | Bernoullistrasse 28, Seminarraum U01 |
Tuesday 17.12.2024 | 12.15-18.00 | Bernoullistrasse 28, Seminarraum U01 |
Modules |
Modul Vertiefung Research (Master's Studies: Nursing) |
Assessment format | continuous assessment |
Assessment details | The exams consist of a written analysis draft (20% of the course grade), a written final analysis (60% of the course grade) and an oral exam (20% of the course grade). |
Assessment registration/deregistration | Registration: course registration: deregistration: institute |
Repeat examination | no repeat examination |
Scale | 1-6 0,1 |
Repeated registration | one repetition |
Responsible faculty | Faculty of Medicine |
Offered by | Institut für Pflegewissenschaft |