Add to watchlist
Back to selection

 

28368-01 - Lecture: Magnetism and Magnetic Materials (4 CP)

Semester fall semester 2024
Course frequency Every fall sem.
Lecturers Hans Josef Hug (hans-josef.hug@unibas.ch, Assessor)
Content Magnetismus, magnetische Materialien, Messmethoden, Anwendungen
Learning objectives Introduction to Magnetism and Magnetic Materials:

In this lecture, we will embark on an exploration of the captivating world of magnetism, a phenomenon that has shaped both our understanding of physics and the development of numerous technologies. The topics to be covered include:

1. Introduction & History of Magnetism:
We'll begin by tracing the origins and historical milestones of magnetism, understanding how this natural phenomenon has been observed and harnessed throughout human history.

2. Magnetostatics:
The principles of static magnetic and magnetization fields will be covered, including the fundamental laws that govern them but also including forces on magnetic tips and particles which are of importance for magnetic force microscopy or biomedical applications.

3. Atomic Magnetism:
An in-depth examination of how magnetism arises at the atomic level, focusing on the behavior of electrons and the nature of magnetic dipoles.

4. Magnetism of Interacting Atoms:
We'll explore how magnetic interactions between atoms contribute to the overall magnetic properties of materials, including various types of magnetic ordering.

5. Magnetic Anisotropy:
This chapter will focus on the directional dependence of magnetic properties, elucidating how materials or magnetic multilayers can preferentially magnetize along specific axes.

6. Magnetic Domains:
Understanding the arrangement of magnetic moments within materials through the study of domains, key to the behavior of ferromagnetic substances.

7. Magnetization Processes:
We'll delve into the processes by which materials become magnetized and demagnetized, and the accompanying phenomena such as hysteresis.

8. Imaging Methods:
A look at various methods used to image magnetic structures, ranging from traditional techniques to state-of-the-art technologies.

9. Skyrmions:
This section will introduce skyrmions, unique topological entities, and their significance in the field of magnetism.

10. Spintronics:
We'll conclude with an exploration of spintronics, a cutting-edge field that exploits the intrinsic spin of the electron to develop novel electronic devices.

Each chapter of this lecture will encompass specific applications, a review of relevant magnetic materials, and a detailed exploration of the experimental methods used to evaluate magnetic properties. This comprehensive approach ensures a holistic understanding of both the theoretical concepts and their real-world applications, fostering a connection between the abstract principles of magnetism and tangible technological innovations.

Together, these chapters offer a comprehensive view of the field of magnetism, from its historical roots to the most modern advancements. Whether you're new to the subject or seeking to deepen your understanding, this lecture promises a fascinating journey through the magnetic world.

Bibliography Modern Magnetic Materials, Robert C. O'Handley, Wiley ISBN 0-471-15566-7, Magnetism and Magnetic Materials, Michael Coey, Cambridge University Press ISBN-10:0521816149

 

Admission requirements Physik 1,2,3,4,
nützlich: Physik der kondensierten Materie oder Festkörperphysik
Course application Dear Students
the lecture can be either in German or in English according to your preferences. The slides are in English.
Kind regards
H.J. Hug
Language of instruction German
Use of digital media No specific media used

 

Interval Weekday Time Room
wöchentlich Thursday 08.00-10.00 Physik, Seminarzimmer 3.12

Dates

Date Time Room
Thursday 19.09.2024 08.00-10.00 Physik, Seminarzimmer 3.12
Thursday 26.09.2024 08.00-10.00 Physik, Seminarzimmer 3.12
Thursday 03.10.2024 08.00-10.00 Physik, Seminarzimmer 3.12
Thursday 10.10.2024 08.00-10.00 Physik, Seminarzimmer 3.12
Thursday 17.10.2024 08.00-10.00 Physik, Seminarzimmer 3.12
Thursday 24.10.2024 08.00-10.00 Physik, Seminarzimmer 3.12
Thursday 31.10.2024 08.00-10.00 Physik, Seminarzimmer 3.12
Thursday 07.11.2024 08.00-10.00 Physik, Seminarzimmer 3.12
Thursday 14.11.2024 08.00-10.00 Physik, Seminarzimmer 3.12
Thursday 21.11.2024 08.00-10.00 Physik, Seminarzimmer 3.12
Thursday 28.11.2024 08.00-10.00 Physik, Seminarzimmer 3.12
Thursday 05.12.2024 08.00-10.00 Physik, Seminarzimmer 3.12
Thursday 12.12.2024 08.00-10.00 Physik, Seminarzimmer 3.12
Thursday 19.12.2024 08.00-10.00 Physik, Seminarzimmer 3.12
Modules Module Specialisation: Physics (Master's Studies: Nanosciences)
Module: Specialisation (Master's Studies: Physics)
Assessment format continuous assessment
Assessment details There will be an oral exam of 30 minutes taking place at a suitable date, Jan or Feb 24.
Assessment registration/deregistration Reg.: course registration, dereg: cancel course registration
Repeat examination no repeat examination
Scale 1-6 0,5
Repeated registration as often as necessary
Responsible faculty Faculty of Science, studiendekanat-philnat@unibas.ch
Offered by Departement Physik

Back to selection