Zurück zur Auswahl
Semester | Frühjahrsemester 2025 |
Angebotsmuster | Jedes Frühjahrsem. |
Dozierende | Patrick Potts (patrick.potts@unibas.ch, BeurteilerIn) |
Inhalt | The theory of quantum thermodynamics investigates how the concepts of heat, work, and temperature can be carried over to the quantum realm, where fluctuations and randomness are fundamentally unavoidable. This lecture provides an introduction to the thermodynamics of small quantum systems. After illustrating how the laws of thermodynamics emerge from quantum theory we will discuss how open quantum systems can be modeled. We then consider models of quantum systems that are designed to perform a certain task, such as cooling or generating entanglement. Finally, we investigate how fluctuations can be taken into account in a thermodynamic description by extending the laws of thermodynamics. Preliminary Outline: I Introduction ------------------ I.1 Basic concepts I.1.1 Linear algebra I.1.2 The density matrix I.1.3 Second quantization I.2 Information theory II. Thermodynamic Equilibrium ----------------------------------------- II.1 Grand canonical ensemble - the Gibbs state II.1.1 Subsystem of closed system II.1.2 Jaynes' maximum entropy principle II.1.3 Global passivity II.2 Equivalence of ensembles in the thermodynamic limit III The Laws of Thermodynamics -------------------------------------------- III.1 The general scenario III.2 Entropy production III.3 The first law of thermodynamics III.4 The second law of thermodynamics III.5 The zeroth law of thermodynamics III.6 The third law of thermodynamics IV Markovian Master Equations ------------------------------------------ IV.1 Nakajima-Zwanzig superoperators IV.2 Born-Markov approximations IV.2.1 Example: equilibration of a quantum dot IV.3 Obtaining GKLS form IV.3.1 The secular approximation IV.3.2 The singular coupling limit IV.3.3 The unified GKLS master equation IV.3.4 Example: a quantum double dot V Quantum Thermal Machines ----------------------------------------- V.1 A quantum dot heat engine V.1.1 Master equation V.1.2 The first law V.1.3 The second law V.1.4 Refrigeration V.2 Entanglement generator V.2.1 Entanglement V.2.2 The master equation V.3 Absorption refrigerator V.3.1 The master equation V.3.2 Figures of merit V.3.3 Perturbation theory V.3.4 Coherence enhanced cooling VI Fluctuations -------------------- VI.1 Fluctuation theorem for a closed system VI.1.1 The two-point measurement scheme VI.1.2 The backward experiment VI.1.3 Fluctuation theorems VI.2 Fluctuation theorem for the general scenario VI.2.1 Forward trajectories VI.2.2 Backward trajectories VI.2.3 Fluctuation theorems VI.3 Full counting statistics VI.3.1 Counting particles VI.3.2 Example: transport through a quantum dot VI.3.3 Counting heat and work VI.4 Thermodynamic uncertainty relations VI.4.1 Current & current noise VI.4.2 Application: heat engine VII Summary VIII Outlook |
Unterrichtssprache | Deutsch |
Einsatz digitaler Medien | kein spezifischer Einsatz |
Intervall | Wochentag | Zeit | Raum |
---|---|---|---|
wöchentlich | Montag | 08.00-10.00 | Physik, Alter Hörsaal 2, 1.22 |
wöchentlich | Donnerstag | 10.00-12.00 | Physik, Seminarzimmer 3.12 |
Datum | Zeit | Raum |
---|---|---|
Montag 17.02.2025 | 08.00-10.00 Uhr | Physik, Alter Hörsaal 2, 1.22 |
Donnerstag 20.02.2025 | 10.00-12.00 Uhr | Physik, Seminarzimmer 3.12 |
Montag 24.02.2025 | 08.00-10.00 Uhr | Physik, Alter Hörsaal 2, 1.22 |
Donnerstag 27.02.2025 | 10.00-12.00 Uhr | Physik, Seminarzimmer 3.12 |
Montag 03.03.2025 | 08.00-10.00 Uhr | Physik, Alter Hörsaal 2, 1.22 |
Donnerstag 06.03.2025 | 10.00-12.00 Uhr | Physik, Seminarzimmer 3.12 |
Montag 10.03.2025 | 08.00-10.00 Uhr | Fasnachstferien |
Donnerstag 13.03.2025 | 10.00-12.00 Uhr | Fasnachstferien |
Montag 17.03.2025 | 08.00-10.00 Uhr | Physik, Alter Hörsaal 2, 1.22 |
Donnerstag 20.03.2025 | 10.00-12.00 Uhr | Physik, Seminarzimmer 3.12 |
Montag 24.03.2025 | 08.00-10.00 Uhr | Physik, Alter Hörsaal 2, 1.22 |
Donnerstag 27.03.2025 | 10.00-12.00 Uhr | Physik, Seminarzimmer 3.12 |
Montag 31.03.2025 | 08.00-10.00 Uhr | Physik, Alter Hörsaal 2, 1.22 |
Donnerstag 03.04.2025 | 10.00-12.00 Uhr | Physik, Seminarzimmer 3.12 |
Montag 07.04.2025 | 08.00-10.00 Uhr | Physik, Alter Hörsaal 2, 1.22 |
Donnerstag 10.04.2025 | 10.00-12.00 Uhr | Physik, Seminarzimmer 3.12 |
Montag 14.04.2025 | 08.00-10.00 Uhr | Physik, Alter Hörsaal 2, 1.22 |
Donnerstag 17.04.2025 | 10.00-12.00 Uhr | Ostern |
Montag 21.04.2025 | 08.00-10.00 Uhr | Ostern |
Donnerstag 24.04.2025 | 10.00-12.00 Uhr | Physik, Seminarzimmer 3.12 |
Montag 28.04.2025 | 08.00-10.00 Uhr | Physik, Alter Hörsaal 2, 1.22 |
Donnerstag 01.05.2025 | 10.00-12.00 Uhr | Tag der Arbeit |
Montag 05.05.2025 | 08.00-10.00 Uhr | Physik, Alter Hörsaal 2, 1.22 |
Donnerstag 08.05.2025 | 10.00-12.00 Uhr | Physik, Seminarzimmer 3.12 |
Montag 12.05.2025 | 08.00-10.00 Uhr | Physik, Alter Hörsaal 2, 1.22 |
Donnerstag 15.05.2025 | 10.00-12.00 Uhr | Physik, Seminarzimmer 3.12 |
Montag 19.05.2025 | 08.00-10.00 Uhr | Physik, Alter Hörsaal 2, 1.22 |
Donnerstag 22.05.2025 | 10.00-12.00 Uhr | Physik, Seminarzimmer 3.12 |
Montag 26.05.2025 | 08.00-10.00 Uhr | Physik, Alter Hörsaal 2, 1.22 |
Donnerstag 29.05.2025 | 10.00-12.00 Uhr | Auffahrt |
Module |
Modul: Vertiefung Physik (Masterstudium: Nanowissenschaften) Modul: Vertiefungsfach (Masterstudium: Physik) |
Prüfung | Lehrveranst.-begleitend |
An-/Abmeldung zur Prüfung | Anm.: Belegen Lehrveranstaltung; Abm.: stornieren |
Wiederholungsprüfung | keine Wiederholungsprüfung |
Skala | 1-6 0,5 |
Belegen bei Nichtbestehen | beliebig wiederholbar |
Zuständige Fakultät | Philosophisch-Naturwissenschaftliche Fakultät, studiendekanat-philnat@unibas.ch |
Anbietende Organisationseinheit | Departement Physik |